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rw -> normal diffusion (1 dimension):
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Linear Fokker-Planck equation:
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H-theorem and FP equation BG
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H-theorem is valid for linear FPE "and” BG entropy
=> relation between FPE and BG entropy?




general solution Fokker-Planck equation

e dependence on time —> F(x)= —kx
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anomalous diffusion

< (z(t) —x9)* > ~ t7 (v#1)

@® subdiffusive (v < 1)
® superdiffusive (v > 1)




anomalous diffusion -> subdiffusion

< (x(t) —z0)* >~ t7 ( v <1 :Subdiffusion )

- existence of “‘traps’ in space, where the particles stay
for a certain time, with a broad distribution of released
time

conductivity of disordered ionic chains
photocopiers, laser printers

random walks on fractal substrates

diffusion in convective rolls

diffusion of contaminants in groundwater
diffusion of proteins across cell membranes, etc




subdiffusion - exemples

@® photocopiers, laser printers: transport of electrons or
holes in amorphous semiconductors in an electric field
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Anomalous transit-time dispersion in amorphous solids
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2 Anomalous diffusion in photocopiers

photocurrent

time
In the 1970s researchers measured the transient photocurrent in amorphous
thin films that form the core of photocopier machines (data points). The blue
dashed line indicates the expected behaviour if this diffusion process
followed Fick's equation, which led Scher and Montroll to describe the
process using broad distributions of waiting times. Both axes are logarithmic.
This became the best known example of anomalous subdiffusion in nature.
From HScher and E Montroll 1975 Phys. Rev. B 12 2455-2477




subdiffusion

@® diffusion of proteins across cell membranes

3 Subdiffusion in cells

Researchers have found that the way proteins diffuse across cell
membranes can be described by anomalous diffusion that is slower than the
normal case. (a) This is asimulation of such a random walk, which shows a

2 ms timeframe overwhich a protein “hops” between 120 nm?
compartments thoughtto be formed by the cell's cytoskeleton. (b) The
experimental trajectories of proteins in the plasma membrane of a live cell
(shown in a 0.025 ms timeframe) provide evidence for this trapping nature,
as shown by the different colours. The long residence times in these
compartments is thought to be the origin of the anomalous behaviour.

Physics World, august 2005




anomalous diffusion -> superdiffusion

< (:I}(t) — 330)2 > ~ t7 (7> 1 : Superdiffusion )

- existence of long range (in time) correlations
present in the velocity of the fracer particle, Levy
flights, nonlinear effects, etc.

e diffusion of micelles in salted water

e Richardson diffusion in turbulent fluids

e flight of albatrosses

* bacteria, plankton, jackals, spider monkeys

* it seems that superdiffusion superates normal BM as a strategy
for finding randomly located food, etc.




anomalous diffusion -> superdiffusion

@ spider monkeys

4 Superdiffusion in monkey behaviour

=

The typical trajectories of spider monkeys in the forest of the Mexican
Yucatan peninsula display steps with variable lengths, which correspond to a
diffusive process that is faster than that of normal diffusion. An example of
such a trajectory is shown on the left. A magnified part of it is shown on the
right; this image looks qualitatively similar to the largerscale trajectory, which
is an important property of Lévy walks. Similar behaviour is found in the
foraging habits of other animals, and could mean that anomalous diffusion
offers a better search strategy than that of normal diffusion.

- modifications in linear diffusion equation




nonlinear Fokker-Planck equation
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Porous media equation _
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® A. R. Plastino and A. Plastino, Physica A 222 (1995) 347;

C. Tsallis and Bukman D. J., PRE 54 (1996) R2197
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stationary solution (¥ =2 —¢q)
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8= (1/D)[Cq_1/(2 — q)} (C' is a positive constant)

same distribution that maximizes Tsallis entropy
with the external constraint ¢(z) !

NLFPE <-> Tsallis entropy!




master equation -> NL Fokker-Planck equation
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® nonlinear transition rates -> nonlinear Fokker-
Planck equations
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nonlinear Fokker-Planck equation
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a|P] = const.
(}| P] = const.
FPE

a|P| = const.

Q[P] = DP+ 1

NLFPE - Plastino and
Plastino, Physica A 1995

EMFC & FD Nobre, PRE 2003,

master equation -> NLFPE ., Nobre, EMFC & G Rowlands, Physica A 2004




H-theorem
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® NLFPE <-> entropy

1 dQQ[P] o Q[P] TD Frank, PH Chavanis,

8 dP? V[ P] FD Nobre, EMFC, etc
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entropy

EPE connection between entropy
and Fokker-Planck equations

@ stationary state of the NLFPE
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same pdf of the stationary state ->

0 equivalent to MaxEnt (S)




families of FPEs <-> entropies

1 d?g[P]
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relation entropy <-> FPE
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let us c’onsider the classes of FPEs satisfying

a[P|b[P] ; W[P] = a[P]P

Freedom for functional a|P]

SchwammleV, Nobre FD, EMFC, PRE 2007
SchwammleV, EMFC, Nobre FD, EPJB 2007




NLFPEs <-> Boltzmann-Gibbs entropy
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—> linear Fokker-Planck equation
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NLFPEs <-> Tsallis entropy
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Nonlinear FPE -> normal diffusion

by v=2—p (u#1)

® stationary solution -> g-Gaussian
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V. Schwammle, EMFC, FD Nobre
EPJB (2009) in press
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non-orthodox constraints
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O conclusions - curious situations:

@ nonlinear FPEs -> Gaussian as stationary
state -> same distribution obtained from
Boltzmann-Gibbs entropy -> anomalous

diffusion

@ nonlinear FPEs -> g-Gaussian as stationary
states -> same distribution obtained from
Tsallis entropy -> normal diffusion.




