Superintendência de Defesa da Concorrência

Boletim Trimestral de Preços e Volumes de Combustíveis

Análise trimestral da evolução dos preços e volumes comercializados dos principais combustíveis no mercado nacional (gasolina C, etanol hidratado, óleo diesel e GLP) e dos preços do petróleo e do gás natural no mercado internacional.

*Versão retificada em 22/07/2021, com ajuste no texto do diesel

Destaques

Tema:

Cenário internacional de transição energética

Gasolina:

Volume de gasolina C comercializado no terceiro trimestre de 2020 apresentou baixa de 5,55% em relação ao mesmo período de 2019 e alta de 20,42% em relação ao segundo trimestre de 2020

Etanol Hidratado

Volume de etanol hidratado comercializado no terceiro trimestre de 2020 apresentou queda de 14,74% em relação ao mesmo período de 2019 e avanço de 25,39% ante o segundo trimestre do ano

Óleo diesel

Volume de diesel S500 comercializado no terceiro trimestre de 2020 apresentou altas de 1,76% em relação ao mesmo período de 2019 e de 19,69% quando comparado ao segundo trimestre de 2020

GLP

Vendas de GLP cresceram 2,31% no 3T/2020 em relação ao mesmo período de 2019, enquanto produção e importação caíram

Petróleo

Preços do petróleo ensaiaram uma recuperação no terceiro trimestre de 2020, apesar de fecharem setembro em queda

Gás Natural

Preços do gás natural se recuperaram e atingiram os patamares de janeiro/2020

Cenário Internacional de Transição Energética

1. Introdução

Nesse fim de ano pandêmico, o Acordo de Paris¹ voltou ao centro das atenções, uma vez que se encerrou o prazo para as nações divulgarem seus comprometimentos com a mitigação de emissão de Gases do Efeito Estufa (GEE) de maneira revisitada e atualizada, chamados de "nationally determined contributions", no Climate Ambition Summit.

Dentro desse compromisso global, o setor energético tem papel crucial para o alcance das metas de redução na emissão de carbono definidas pelo Acordo de Paris. No grupo de 28 países europeus (EU-28) mais Islândia, a contribuição do setor energético na emissão de gases do efeito estufa foi de 78% em 2017², enquanto nos Estados Unidos essa parcela foi de 74% para o mesmo ano³.

Pressionados pelo Acordo de Paris e, mais recentemente, pela opinião pública, tanto governos quanto empresas vêm traçando a chamada "transição energética" com o fim de atingir a neutralidade de emissão. Tal plano se baseia na mudança energética de fontes fósseis, como petróleo, gás natural e carvão, para fontes renováveis. Sendo assim, o movimento de transição energética, observado mundialmente, é uma faceta importante do compromisso dos países em atingir a descarbonização total das economias e evitar o colapso climático no futuro.

Na Europa, a percepção sobre os problemas climáticos e ambientais como uma tarefa a ser realizada pela geração presente acarretou a formulação do "The European Green Deal" no ano de 2019. Para tal, traçaram-se planos que objetivam alcançar uma economia zero carbono até 2050, com base no uso eficiente de recursos. Um dos elementos de apoio do Acordo Europeu foi a oferta de "clean, affordable and secure energy". Para atingir a neutralidade de emissão em 2050, destacam-se tanto a priorização de melhorias na eficiência energética (admitindo-se que, na Europa, mais de 70% da emissão de GEE é proveniente da produção e consumo de energia), quanto se ressalta a importância da integração e interconexão de energia⁴.

O continente europeu contribui com 8% das emissões globais² e, apesar da estabilização das emissões de GEE a partir de 2014 até o último dado de 2017, tem diminuído seu potencial poluidor, de acordo com a meta de 2020. O compromisso de redução em pelo menos 55% da emissão de GEE em 2030 (em relação ao nível de 1990) por parte da União Europeia, apresentado em setembro/2020⁵, foi confirmado em dezembro de 2020 no *Climate Ambition Summit*⁶.

¹O Acordo de Paris é um tratado no âmbito da Convenção-Quadro das Nações Unidas sobre a Mudança do Clima (CQNUMC). O Acordo foi celebrado por 195 países em 2015, e definiu que o aumento na temperatura média global não deveria ser superior a 2°C e, preferencialmente, inferior a 1,5°C em relação aos níveis pré-industriais.

² "Annual European Union greenhouse gas inventory 1990-2017 and inventory report 2019". Disponível em: <u>European Union.</u> 2019 National Inventory Report (NIR) | <u>UNFCCC</u>

³ United States 2019, Energy Policies of IEA Countries Review, International Energy Agency

⁴ The European Green Deal, The European Commisson. Disponível em: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019DC0640

⁵ State of the Union: Commission raises climate ambition and proposes 55% cut in emissions by 2030. Disponível em: https://ec.europa.eu/commission/presscorner/detail/en/IP 20 1599

⁶ 75 Leaders Announce New Commitments During Climate Ambition Summit. Disponível em: https://sdg.iisd.org/news/75-leaders-announce-new-commitments-during-climate-ambition-summit/

Já a China, segunda maior economia do mundo e maior emissora de gases do efeito estufa⁷, contribui com 28% dessa totalidade⁸. Além disso, é responsável pela metade do consumo global de carvão⁴ e detém 85% da sua matriz energética constituída de combustíveis fósseis³. Apesar dessas evidências que aparentam ir contra os propósitos de uma transformação verde do setor de energia na China, para o ano de 2020, a meta de redução de emissão de carbono entre 40% e 45% em comparação a 2005 provavelmente foi alcançada, visto que já em 2019 a queda de emissão estava em 51% na mesma base comparativa⁴. Em adição, na 75ª Assembleia Geral da ONU em setembro de 2020, o presidente Xi Jinping declarou que o pico de emissão de dióxido de carbono deverá ser atingido antes de 2030 e que a neutralidade de carbono no país será alcançada até 2060⁹.

Em relação aos Estados Unidos, apesar de sua manifestação de intenção de saída do Acordo de Paris em junho de 2017 e da efetivação de retirada do pacto em novembro de 2020¹⁰, houve no país um intento de combate às mudanças climáticas através do chamado "Green New Deal". Ainda que não tenha passado pela votação no Senado e que, portanto, não tenha sido aprovado, o referido projeto gerou repercussão na política norte-americana e na mídia internacional. Estão entre as medidas propostas pelo programa: expandir as fontes de energia renováveis, construir ou melhorar a eficiência energética e transformar a infraestrutura e manufatura veicular em atividades zero emissão¹¹.

Portanto, com o objetivo de melhor compreender o cenário de transição energética global, dividiremos a análise entre quatro aspectos, quais sejam: (i) os efeitos da pandemia do coronavírus nesse cenário; (ii) o panorama do processo de eletrificação no mundo; (iii) como o chamado "hidrogênio verde" se insere nesse contexto; e (iv) as necessidades regulatórias advindas dessa transição.

2. Pandemia do Coronavírus

A crise sanitária de 2020 ocasionada pela Covid-19, por um lado, impactou negativamente o movimento de transição energética. O isolamento social implicou em retração na demanda mundial por petróleo e combustíveis e, de maneira generalizada, gerou baixa nos preços. A pandemia causou efeitos negativos, como destacado pelo Oxford Institute for Energy Studies¹²: os preços baixos de petróleo e combustíveis significam receitas contraídas e investimentos menores em energia limpa por parte das companhias de petróleo, a queda dos preços de combustíveis fósseis torna os veículos elétricos menos competitivos e a recessão econômica impede a renovação da frota veicular para carros mais eficientes e menos poluentes.

Apesar disso, o debate sobre transição energética foi aflorado com a crise sanitária, por salientar a possibilidade de saída da recessão através do lema "build back better". Quando criados planos nacionais de recuperação econômica ao redor do mundo, algumas nações atentaram para o potencial dessas políticas na promoção de crescimento econômico, na criação de empregos e na diminuição de emissão de gases do efeito estufa, caso fossem guiadas pelo investimento em sustentabilidade, o chamado "green recovery".

A ideia de economia verde antecede a pandemia do Covid-19. Os países que desempenham transições energéticas a utilizam não somente com o objetivo de neutralizar emissões de GEE, mas também em prol de suas economias e

⁷ Unpacking China's 2060 carbon neutrality pledge, Oxford Energy Comment, December 2020.

⁸ China's post-COVD-19 stimulus: No Green New Deal in sight, Australian National University

⁹ Xi Jinping announces China aims for carbon neutrality by 2060 at UN General assembly. Disponível:

https://chinaenergyportal.org/en/xi-jinping-announces-china-aims-for-carbon-neutrality-by-2060-at-un-general-assembly/

¹⁰ EUA notificam a ONU e confirmam saída do Acordo de Paris. Disponível em:

https://g1.globo.com/natureza/noticia/2019/11/04/eua-notificam-a-onu-e-confirmam-saida-do-acordo-de-paris.ghtml

¹¹ Green New Deal. Disponível: https://www.congress.gov/116/bills/hres109/BILLS-116hres109ih.pdf

¹² Oxford Energy Forum, July 2020, Issue 123: COVID-19 AND THE ENERGY TRANSITION

sociedades. Admite-se que o ramo de energia renovável é uma atividade econômica intensa em mão de obra, diferentemente das energias fósseis.

Durante o contexto de isolamento social ocasionado pelo coronavírus, o Fundo Monetário Internacional (FMI), em parceria com a *Internacional Energy Agency* (IEA), lançou um estudo contendo estratégias de investimento que poderiam ser adotadas por governo, ressaltando os efeitos econômico, social e ambiental de políticas criadas na pandemia às décadas futuras. Um plano de recuperação sustentável para o ramo de energia foi apontado como essencial, tendo em vista fatores como: a volatilidade do mercado internacional de petróleo, a percepção do bemestar trazido por energia limpa, a possibilidade de permanência dos novos padrões de comportamento pós-pandemia e a urgência em restaurar e criar novos postos de trabalho¹³.

Segundo o *Global Renewables Outlook*¹⁴, da *International Renewable Energy Agency* (IRENA), a transformação energética pode, além de reduzir em 70% a emissão de carbono, representar: declínio no custo da energia renovável, melhora na qualidade do ar, universalização de acesso à energia, promoção de segurança energética e benefícios socioeconômicos.

O pacote de estímulo à retomada econômica pós-covid-19 da União Europeia garantiu 1,8 trilhão de euros de ajuda, dos quais 30% foram destinados ao combate às mudanças climáticas¹⁵. Na China, como uma resposta à crise do coronavírus e no âmbito das responsabilidades ambientais, destacou-se a isenção fiscal para veículos elétricos e outros carros de energia limpa, que foi estendida por mais dois anos⁶.

O movimento global de transformação energética referido anteriormente é calcado em dois pilares: a eletrificação e o hidrogênio verde. Fazem-se então necessárias a exposição breve das duas facetas e a explanação de alguns projetos de países centrais que as perseguem.

3. Eletrificação

De acordo com a *International Renewable Energy Agency*, a maior participação das fontes limpas na oferta de energia elétrica é essencial para a total descarbonização do ramo da energia, proporcionada pela combinação da contínua redução dos custos das tecnologias das energias renováveis e da adoção de eletricidade em aplicações em pontas de cadeia, como no transporte, no aquecimento e na produção de hidrogênio¹⁴.

Segundo a Agência, em um cenário de transformação energética, a eletricidade constituirá 49% do consumo final de energia e 86% da energia elétrica será de origem renovável (frente à 28% no primeiro trimestre de 2020¹⁶) em 2050, impulsionada pelos custos decrescentes das fontes limpas, como a solar e a eólica¹⁴.

O movimento de eletrificação pode ser constatado tanto nos planos de negócio de empresas quanto em disposições e agendas energéticas de países centrais ao redor do mundo.

O plano climático apresentado em 2020 pelo novo presidente eleito dos EUA demonstra preocupação com a mudança climática global, representando uma possível nova agenda ambiental àquele país. O programa estabelece a construção de nova infraestrutura como um dos pilares da recuperação econômica pós-Covid-19 e do crescimento sustentável. É citada a reconstrução de estradas, pontes, aeroportos e portos e a formulação da 2ª revolução da ferrovia baseada

¹³ Sustainable Recovery, World Energy Outlook Special Report. International Energy Agency e International Monetary Fund

¹⁴ Global Renewables Outlook 2020, International Renewable Energy Agency (IRENA)

¹⁵ Recovery plan for Europe. Disponível em: https://ec.europa.eu/info/strategy/recovery-plan-europe en

¹⁶ Global Energy Review 2020, International Energy Agency

em eletrificação. Para além da eletrificação na ponta, disserta também sobre a importância de um setor elétrico baseado em fontes limpas, ao passo que pretende tornar a eletricidade livre de carbono até 2035¹⁷.

Frente à liderança da China no mercado global de veículos elétricos, o plano norte-americano também aborda estratégias para sua indústria automobilística. Para a concretização da proposta eleitoral, foram traçadas metas como: a aceleração de pesquisa e desenvolvimento de tecnologias de baterias, criação de um milhão de empregos no setor automobilístico e construção de 500.000 estações de recarga de veículos elétricos.

Na Europa, a faceta da eletrificação se faz muito presente no setor de transportes: a mobilidade vem se tornando menos poluente à medida que os veículos elétricos ganham espaço no mercado, impulsionados pela estratégia de política europeia. Segundo a *EU Renewable Energy Directive* (RED) I de 2008, a participação de combustíveis renováveis no setor de transportes deveria ser de 10% em 2020 e, quanto à RED II de 2018, esse percentual deveria ser, no mínimo, de 14% até 2030¹⁸.

A venda de veículos elétricos (VEs) segue trajetória ascendente desde 2010. Enquanto o número de VEs chegou perto de 1,3 milhão em 2019, uma década antes o número não passava de algumas centenas. Para os maiores estoques de VEs, destacam-se países como: Noruega, Alemanha, Reino Unido, França e Holanda. A quantidade de postos de recarga de veículos elétricos também apresenta crescimento desde 2012 (o número de pontos públicos de recarga foi de 184.000 em 2019¹³). Até 2030, a Comissão Europeia espera ter pelo menos 30 milhões de VEs circulando pelo bloco¹⁹.

A pandemia de Covid-19, de fato, reforçou esse quadro. O registro de novos veículos elétricos carregáveis (*electrically chargeable passenger vehicles*) aumentou 100,7% no primeiro trimestre de 2020 frente ao mesmo período de 2019 e, além disso, 25 mil novos postos de recarga foram criados nos três primeiros meses de 2020. O sucesso da política energética europeia em promover combustíveis renováveis e a descarbonização do setor de energia está ligada aos subsídios aprovados por governos europeus. Estima-se que na França, a partir de junho de 2020, o subsídio na compra de VEs seja de 7.000 euros e, na Alemanha, de 9.000 euros²⁰.

A matriz elétrica europeia também segue em plena transformação. No primeiro semestre de 2020, pela primeira vez na história, a participação de geração renovável (40%) foi maior que a de fósseis (34%) na matriz elétrica da EU-27²¹. Esse movimento foi ocasionado pela política de encerramento das usinas a carvão em16 países europeus, definida no acordo internacional chamado *Powering Past Coal Alliance* e pelo fim dos subsídios europeus às perdas na produção de carvão em 31/12/2018¹⁸.

A China em seu "Government Work Report 2020", discutido na reunião anual "Two Sessions" de 2020, identifica seus objetivos de desenvolvimento e de recuperação econômica baseados sob a construção de uma nova infraestrutura e promoção de um novo padrão de urbanização, calcados em tecnologia de ponta, como rede 5G, big data, Inteligência Artificial, High-Speed Rail e Light Rail Transit, o que significa alta necessidade de aceleração na eletrificação das cidades

¹⁷The Biden Plan For A Clean Energy Revolution And Environmental Justice. Disponível: https://joebiden.com/climate-plan/

¹⁸ European Union 2020, Energy Policy Review, International Energy Agency, pp. 293

¹⁹ EU aims to have 30 million EVs on the road by 2030. Disponível: https://europe.autonews.com/sales-market/eu-aims-have-30-million-evs-road-2030

²⁰ Quartely Report on European Electricity Markets, Volume 13, first quarter of 2020, European Commission

²¹ Renewables beat Fossil Fuels. Disponível em: <a href="https://ember-climate.org/project/renewables-beat-fossil-fuels/#:~:text=In%20the%20first%20half%20of%202020%2C%20renewables%20generated%2040%25%20of,the%20EU%2D27's %20electricity%20generation

chinesas²². Tal empenho pode ser verificado ao se observar que o investimento em nova infraestrutura cresceu 11,7% entre 2019 e 2020 e o investimento em transporte ferroviário aumentou 6,4% na mesma base comparativa²³.

Apesar de o país oriental ser líder mundial em instalação de capacidade em energia solar e eólica, entre 2018 e 2019, a adição de capacidade energética de ambas caiu de uma combinação de 64 GW para 56 GW, respondendo a uma redução do nível de subsídios²⁴. Portanto, é de se observar que essa primazia chinesa não necessariamente implica que o movimento de eletrificação, de fato, represente uma descarbonização irreversível da sua economia.

Vale registrar também que o governo chinês fez concessões à instalação de capacidade energética advinda das usinas à carvão. Nos primeiros cinco meses de 2020, em adição aos 46 GW de plantas à carvão até então construídas, foram permitidos mais 48 GW¹⁸. Já no que tange ao mercado de baterias de lítio, a China ocupa o primeiro lugar no ranking de produtores de células da BloombergNEF; países da Europa, como Alemanha e Finlândia ocupam, respectivamente, quarto e sétimo lugares, e os Estados Unidos estão em sexto²⁵ nesse ranking.

Nesse contexto, na corrida por espaço na janela de oportunidades criada pela transição energética global, a Europa intenta competir com a Ásia ao investir bilhões de euros no seu programa "Battery Alliance", almejando a autossuficiência de baterias²⁶. Os Estados Unidos, com a eleição de Joe Biden em 2020, pretendem concorrer também pela vanguarda.

A difusão de veículos elétricos e de políticas de impulso à eletrificação, principalmente no setor de mobilidade, faz-se evidente pela observação dos dados estatísticos globais. Segundo o *Global EV Outlook 2020* da IEA, o total de VEs cresceu 40% e 63%, respectivamente, nos períodos entre 2018/2019 e 2017/2018, alcançando 7,2 milhões em 2019. Já as estações de recargas de VEs ao redor do mundo totalizaram 7,3 milhões²⁷.

4. Hidrogênio Verde

O consumo de hidrogênio não emite gases do efeito estufa, o que o torna um combustível renovável. Entretanto, o hidrogênio convencional (por vezes, chamado de hidrogênio cinza) é majoritariamente produzido do gás natural e do carvão, o que significa que seu processo de produção é poluente. Segundo o IEA, infere-se que a produção desse combustível implique atualmente uma emissão de 830 milhões de toneladas de carbono por ano²⁸. Dada essa problemática, o hidrogênio verde surge na tentativa de tornar limpa a geração de hidrogênio.

O hidrogênio verde é produzido através da descarga elétrica na água para separar as moléculas de hidrogênio e oxigênio, processo chamado de eletrólise. Para que esse combustível seja, de fato, renovável, é necessário também que a fonte de energia elétrica seja limpa (exemplos: eólica, solar e hidráulica).³⁰

²² COVID-19 and the electrification of the Chinese economy, Oxford Energy Comment, June 2020

²³ COVID-19 stalls China's economic transition as stimulus bypasses consumers. Disponível em:

 $[\]frac{https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/covid-19-stalls-china-s-economic-transition-as-stimulus-bypasses-consumers-60396529$

²⁴ Current direction for renewable energy in China, Oxford Energy Comment, June 2020.

²⁵ China domina cadeia de suprimentos de baterias de lítio, mas Europa cresce. Disponível em:

https://www.bloomberg.com.br/blog/china-domina-cadeia-de-suprimentos-de-baterias-de-litio-mas-europa-cresce/

²⁶ Tougher battery standards sought by EU in shift to electric cars. Disponível em:

https://europe.autonews.com/suppliers/tougher-battery-standards-sought-eu-shift-electric-cars

²⁷ Panorama internacional da mobilidade elétrica em um contexto de transição energética. Disponível em: https://www.canalenergia.com.br/artigos/53144772/panorama-internacional-da-mobilidade-eletrica-em-um-contexto-de-transicao-energetica

²⁸ The future of hydrogen. Disponível em: https://www.iea.org/reports/the-future-of-hydrogen

Estima-se que, atualmente, menos de 0,1% da produção de hidrogênio seja do tipo verde²⁸ e que, até 2030, a sua produção se torne 30% menos custosa que a do hidrogênio "cinza" (produzido por fontes fósseis em combinação com sistemas de captura e estocagem de carbono)³⁰.

O hidrogênio é amplamente utilizado em diversas áreas essenciais da economia, como no processo de refino de petróleo (para extração de enxofre), na produção de amônia e de metanol²⁹e na indústria do aço (ao passo que não se faz mais necessário o coque para extração do oxigênio do minério de ferro)³⁰. Em adição, o hidrogênio verde teria outro impacto importante: o de suprir a demanda energética onde há dificuldade de ser executada eletrificação, como, por exemplo, no setor de veículos pesados que viajam longas distâncias.³⁰

O hidrogênio verde também desempenha papel importante na transição energética, pois impulsiona o crescimento do mercado de eletricidade renovável. Isso, em função dos eletrolisadores que adicionam flexibilidade do lado da demanda e oferecem armazenamento sazonal de energia solar e eólica. O hidrogênio verde, portanto, atua no sentido de criar uma sinergia e promover flexibilidade³⁰.

Segundo o "Development plan for the new energy vehicle industry (2021-2035)"³¹, do Portal de Energia da China, a China tem interesse em promover e impulsionar a economia do setor de hidrogênio em todas as etapas da cadeia: produção, estocagem, transporte e infraestrutura. Em seu 13° Five-Year-Plan, a China traçou, para 2030, meta de ter um milhão de veículos movidos à hidrogênio e mil pontos de abastecimento³².

Em relação à atuação do governo federal norte-americano quanto ao hidrogênio, não há ainda política nacional vigente; destacando-se somente políticas estaduais, como no estado da Califórnia³³. Entretanto, no plano climático de Joe Biden, é explicitada a intenção de investir em tecnologias do futuro, barateá-las e comercializá-las, como é o caso do hidrogênio renovável.

Na Europa, o hidrogênio limpo é considerado um combustível de interesse público para a transição energética e descarbonização. De acordo com o *European Green Deal*, é essencial o desenvolvimento de tecnologias inovadoras e de infraestrutura para a rede de hidrogênio e, para tanto, o investimento em pesquisa⁴. Iniciativas governamentais como *EU Hydrogen Strategy* e o *European Clean Hydrogen Alliance* fomentaram estudos nesse ramo de energia renovável³⁴. Conforme descrito pelo *Hydrogen Strategy*, a meta europeia para 2030 é de uma produção de, pelo menos, 10 milhões de toneladas de hidrogênio verde³⁵.

Dos projetos de criação de plantas produtoras de hidrogênio, pode-se citar a parceria entre Enel e Eni para produção do renovável na Itália³⁶. No desenvolvimento de hidrogênio verde, a Espanha se destaca com um investimento de 1,5

²⁹ "Produção de Hidrogênio em refinarias de petróleo: Avaliação Energética e Custo de Produção". Disponível em: https://www.teses.usp.br/teses/disponiveis/3/3150/tde-17082010-123008/publico/Dissertacao Flavio Eduardo da Cruz.pdf (p. 8)

³⁰ How Hydrogen Could Solve Steel's Climate Test and Hobble Coal. Disponível em: https://about.bnef.com/blog/hydrogen-solve-steels-climate-test-hobble-coal/?sf108467981=1

³¹ Development plan for the new energy vehicle industry (2021-2035). Disponível em: https://chinaenergyportal.org/en/development-plan-for-the-new-energy-vehicle-industry-2021-2035/#

³² Transição energética e o hidrogênio: oportunidades, desafios e perspectivas. Disponível em:

https://geselartigos.com/2020/05/28/transicao-energetica-e-o-hidrogenio-oportunidades-desafios-e-perspectivas/

³³ California Is Trying to Jump-Start the Hydrogen Economy. Disponível em: https://www.nytimes.com/2020/11/11/business/hydrogen-fuel-california.html

³⁴ Hydrogen. Disponível em: https://ec.europa.eu/energy/topics/energy-system-integration/hydrogen/#eu-hydrogen-strategy

³⁵ EU Hydrogen Strategy. Disponível em: https://ec.europa.eu/commission/presscorner/detail/en/fs 20 1296

³⁶ Enel, Eni partner on green hydrogen pilots in Italy. Disponível em: https://renews.biz/64864/enel-eni-partner-on-green-hydrogen-pilots-in-italy/

bilhão de euros nos próximos três anos, enquanto a Alemanha e a França pretendem investir 9 bilhões e 2 bilhões de euros, respectivamente ³⁷.

No Brasil, existem pesquisas em andamento em universidades públicas visando tornar mais eficiente a extração de hidrogênio do etanol por meio de reações químicas³⁸. Essas pesquisas, que têm ocorrido inclusive em parceria com a indústria automobilística, podem viabilizar motores mais eficientes e muito menos poluentes³⁹. Outro argumento favorável ao etanol como fonte de hidrogênio, em vez do uso de baterias, é o de que baterias de carros elétricos são baseadas em minérios esgotáveis.⁴⁰

5. Impacto Regulatório

Há de salientar que a transição energética tem grande impacto sobre a atividade regulatória. Como um de seus efeitos, pode-se destacar uma tendência que surge com a necessidade intrínseca a ela de retomada do papel de importância dos agentes reguladores para fazer frente às dificuldades e conflitos oriundos desse movimento global, chamado de "reregulation". Tal conjunção é estudada e retratada por Gencer et al. (2020)⁴¹, como uma evolução que perpassa a última década, acompanhando a elevação da participação de fontes de energia renováveis na matriz energética.

Em primeiro lugar, merece registro a necessidade de renovação na abordagem e no planejamento sobre capacidade energética, dado que energias limpas detêm características peculiares que demandam maior atenção, como a intermitência e os custos marginais próximos à zero. O fato de a oferta proveniente de energias renováveis não se sustentar ao longo do dia inteiro, e requerer complementação através de geração elétrica oriunda de energia fóssil, torna evidente a necessidade de uma nova abordagem. Diante disso, tornam-se essenciais a adequação dos Governos para sustentar um equilíbrio na matriz energética e a modificação no escopo regulatório, visando à defesa e à manutenção da segurança energética do país.

Além disso, o cenário de transição energética também implica em um número crescente de agentes econômicos no mercado e isso suscita, por conseguinte, uma quantidade maior de decisões que essas partes devem desempenhar. Esses movimentos crescentes de complexificação e de incerteza no mercado também reforçam a essencialidade dos agentes reguladores perante a um ambiente de informações imperfeitas²¹.

No documento do "The European Green Deal" consta o cenário previamente mencionado: "O quadro regulamentar para a infraestrutura energética (...) terá de ser revisto" e "Este quadro deve fomentar a implantação de tecnologias e infraestrutura inovadoras". O plano de transição energética da Europa, por exemplo, reflete e confirma o referido panorama: ainda no documento do "The European Green Deal", é citado que "O Acordo Verde fará uso consistente de todas as alavancas de política: regulamentação e padronização".

Portanto, o arcabouço regulatório dos países deve acompanhar as modificações impostas pela transição energética. Na medida em que novos paradigmas tecnológicos implicam em mudanças na estrutura de oferta e uso, a criação e o

https://jornaldocarro.estadao.com.br/carros/nissan-usp-ipen-etanol-hidrogenio/

³⁷ Iberdrola Aims for Green Hydrogen Leadership Role in Europe. Disponível em: https://www.greentechmedia.com/articles/read/iberdrola-guns-for-green-hydrogen-leadership-in-europe

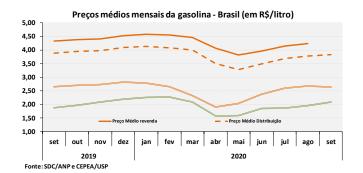
³⁸ Hidrogênio a partir do Etanol. Disponível em: https://revistapesquisa.fapesp.br/hidrogenio-a-partir-de-etanol/

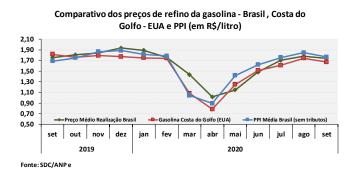
³⁹ Nissan e USP vão desenvolver célula de hidrogênio a etanol. Disponível em:

⁴⁰ Aposta da Europa em hidrogênio verde abre janela ao Brasil. Disponível em: https://noticias.uol.com.br/ultimas-noticias/deutschewelle/2020/10/09/aposta-da-europa-em-hidrogenio-verde-abre-janela-ao-brasil.htm

⁴¹Referente ao artigo "Understanding the coevolution of electricity markets and regulation"; Busra Gencer, Erik Reimer Larsen, Ann van Ackere.

desenvolvimento de novas fontes energéticas conformam um ambiente que enseja a adaptação do arcabouço teórico regulatório.

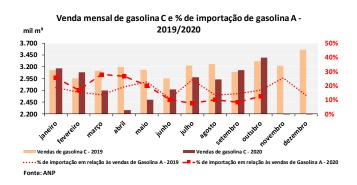

GASOLINA C

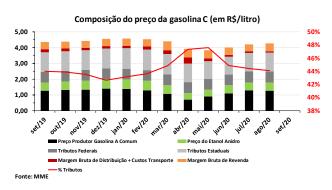

Volume de gasolina C comercializado no terceiro trimestre de 2020 apresentou baixa de 5,55% em relação ao mesmo período de 2019 e alta de 20,42% em relação ao segundo trimestre de 2020

Na etapa de revenda, em análise mensal, o preço médio da gasolina comum registrou variações de 4,54% na comparação entre junho (R\$ 3,964/litro) e julho (R\$ 4,144/litro) e 2,24% na comparação de julho com agosto (R\$ 4,237/litro). Dado que não houve pesquisa de preços no mês de setembro, não há dados disponíveis para análise nesse período.

Na etapa de distribuição, o preço médio da gasolina comum fechou set/20 em R\$ 3,834/litro, alta de 9,89% em relação ao apurado em jun/20. Ao longo do trimestre, o preço médio da gasolina comum avançou 5,79%, 2,30% e 1,54%, respectivamente, nos meses de julho, agosto e setembro. Na comparação entre set/20 e set/19, baixa de 1,13%.

Na etapa de produção, o preço médio da gasolina A variou positivamente em 10,91% ao longo do trimestre e registrou queda de 0,51% na comparação anual, tendo alcançado o valor de R\$ 2,631/litro. Os preços aumentaram 9,44% em julho e 2,89% em agosto, com retração de 1,51% em setembro. Já o preço médio do etanol anidro (adicionado na proporção de 27% na gasolina C comum) avançou 0,16%, 5,08% e 7,06% na mesma base comparativa. Na variação trimestral o preço médio do biocombustível apresentou alta de 12,68%, enquanto na comparação de set/20 com set/19 a variação foi de 11,05%.


O Preço de Paridade de Importação médio variou positivamente em 8,85% ao longo do trimestre e em 4,66% em comparação com set/19, atingindo o valor de R\$ 1,7631/litro em setembro de 2020. O preço médio PPI aumentou 8,32% em julho e 5,23% em agosto, retraindo 4,50% em setembro.

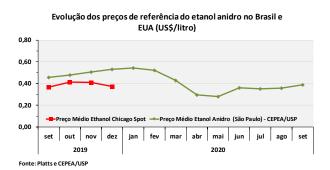

No terceiro trimestre de 2020, os percentuais relativos às margens médias brutas de distribuição e de revenda, bem como do preço médio do produtor de etanol anidro e dos tributos federais recuaram, ao passo que dos preços médios do produtor de gasolina A e dos tributos estaduais avançaram em relação ao 2T/2020. Na penúltima semana de agosto, as margens médias brutas de revenda e de distribuição representaram 11,3% e 2,5%, respectivamente, do preço de revenda da gasolina C comum. A parcela dos impostos (estaduais e federais) representou 44,1% e a soma das parcelas relativas aos preços de produção do etanol anidro e da gasolina A totalizou 42,1% do preço ao consumidor final do combustível fóssil.

Em relação à produção de gasolina A, o volume total produzido no terceiro trimestre de 2020 (5,9 milhões de m³) foi 7,10% menor que o registrado no mesmo período do ano imediatamente anterior e 33,38% superior ao obtido no segundo trimestre de 2020. Em comparação aos respectivos meses do terceiro trimestre de 2019, o total produzido do combustível fóssil foi reduzido em 14,79% em jul/20 (1,9 milhão de m³) e 9,00% em ago/20 (2,0 milhões de m³), avançando 3,95% em set/20 (2,0 milhões de m³). Na comparação mensal, houve alta de 12,07% em julho, 5,19% em agosto e 0,44% em setembro.

O volume total comercializado de gasolina C no terceiro trimestre de 2020 (9,0 milhões de m³) foi 5,55% menor que o total de vendas no mesmo período de 2019 e 20,42% superior ao vendido no segundo trimestre de 2020 (7,5 milhões de m³). A venda acumulada do combustível fóssil em set/20 foi 9,13% inferior ao volume vendido no mesmo período de 2019. Quando comparados aos respectivos meses de 2019, os volumes comercializados registraram recuos de 7,59% no mês de julho (3,0 milhões de m³) e de 9,96% no mês de agosto (2,9 milhões de m³), e alta de 1,24% no mês de setembro (3,1 milhões de m³). Em relação aos meses imediatamente anteriores, os totais de venda do combustível fóssil apresentaram avanço de 9,52% em julho e 6,62% em setembro, e queda de 1,63% em agosto.

No que diz respeito às importações de gasolina A, o volume total importado no terceiro trimestre de 2020 foi de 571,8 mil m³, volume 52,93% inferior ao registrado no mesmo período de 2019 (1,2 milhão de m³) e 43,43% menor que a importação do segundo trimestre de 2020 (1,0 milhão de m³). Quando comparados aos meses imediatamente anteriores, as importações variaram -17,76% em julho, 33,62% em agosto e -11,77% em setembro. As razões entre o volume importado e o volume de vendas de gasolina A foram de 7,47% em julho (162,7 mil m³), 10,15% em agosto (217,4 mil m³) e 8,40% em setembro (191,8 mil m³).

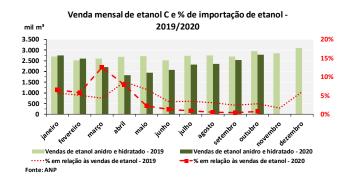
ETANOL HIDRATADO


Volume de etanol hidratado comercializado no terceiro trimestre de 2020 apresentou queda de 14,74% em relação ao mesmo período de 2019 e avanço de 25,39% ante o segundo trimestre do ano

Na etapa de revenda, em análise mensal, o preço médio do etanol hidratado registrou variações de 3,16% na comparação entre junho (R\$ 2,655/litro) e julho (R\$ 2,739/litro) e 1,06% na comparação de julho com agosto (R\$ 2,768/litro). Dado que não houve pesquisa de preços no mês de setembro, não há dados disponíveis para análise nesse período.

Na etapa de distribuição, o preço médio do etanol hidratado aumentou 3,85% ao longo do período em análise, subindo de R\$ 2,283/litro em junho para R\$ 2,371/litro em setembro. Verificaram-se avanços no preço do produto em 3,59% em julho (R\$ 2,365/litro) e 1,40% em agosto (R\$ 2,398/litro), e queda de 1,13% em setembro. Na comparação anual, o preço do biocombustível arrefeceu 5,95%, quando estava cotado a R\$ 2,521/litro em setembro de 2019.

Já na etapa de produção, segundo o CEPEA/USP, o preço médio do biocombustível apresentou acréscimo de 9,22% ao longo do terceiro trimestre de 2020, passando de R\$ 1,643/litro em junho para R\$ 1,795/litro em setembro. Em julho (R\$ 1,637/litro) foi registrado recuo de 0,41%, enquanto em agosto (R\$ 1,718/litro) e setembro, avanços de 4,99% e 4,45%, respectivamente. Na comparação anual, o preço médio de produção do etanol hidratado aumentou 4,57% em relação a setembro de 2019 (R\$ 1,717/litro).


Preços médios mensais do etanol hidratado - Brasil (em R\$/litro) 3,50 3,20 2 60 2.30 2,00 1,70 1.40 0,80 abr mai iul out nov dez mar ago 2019 Fonte: SDC/ANP e CEPEA/USF

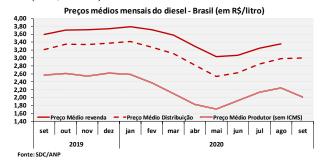
Segundo o Relatório Quinzenal da ÚNICA (posição até 01/10/2020), a nova safra de cana-de-açúcar, iniciada em 1° de abril de 2020, apresentou menor participação de etanol (anidro + hidratado) no mix de produtos em relação à safra anterior até fins de setembro. A participação do etanol no total de cana processada caiu de 64,69% em 2019/2020 para 53,04% em 2020/2021. A produção acumulada de etanol total na safra 2020/2021 até fins de setembro foi de 23,4 milhões de m³, recuo de 7,47% em relação à safra do ano anterior (25,3 milhões de m³), sendo: 16,3 milhões de m³ de etanol hidratado (-7,99%) e 7,1 milhões de m³ de etanol anidro (-6,26%). Os dados são referentes à região Centro-Sul, principal polo produtor.

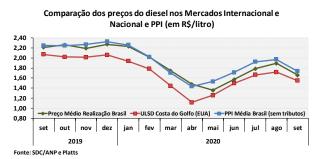
O volume de etanol hidratado comercializado no terceiro trimestre de 2020 foi de 4,8 milhões de m³ frente a 5,6 milhões de m³ do biocombustível vendidos de julho a setembro de 2019, queda de 14,74%. Ao longo do trimestre, o volume de vendas apresentou altas de 13,12% em julho (1,5 milhão de m³), de 3,90% em agosto (1,6 milhão de m³) e 8,34% em setembro (1,7 milhão de m³). Na comparação do trimestre em análise com o segundo trimestre do ano (3,8 milhões de m³), o volume de vendas foi 25,39% superior. As vendas acumuladas de etanol hidratado até setembro de 2020 totalizaram 13,8 milhões de m³, volume 16,03% menor em comparação às vendas no mesmo período de 2019 (16,4 milhões de m³).

A importação de etanol total durante o terceiro trimestre de 2020 alcançou 44,9mil m³, queda de 81,78% em relação ao volume importado no mesmo período de 2019 (246,4 mil m³) e 79,09% abaixo do registrado no segundo trimestre de 2020 (214,7 mil m³). Ressalta-se que, em outubro de 2019, a Secretaria Executiva da Câmara de Comércio Exterior (CAMEX) estabeleceu a periodicidade de importação de etanol (anidro + hidratado) isento de taxação de 20% em volume máximo de 275 mil m³ para ambos os períodos, mar/20 a mai/20 e jun/20 a ago/20⁴². Dessa forma, as importações corresponderam a 22,43% do limite estabelecido para o segundo período. Ademais, em 11 de setembro de 2020, o Comitê Executivo de Gestão (Gecex) da CAMEX estabeleceu nova cota de 187,5 mil m³ para importação de etanol (anidro + hidratado) isento de taxação de 20% para 90 dias contados a partir de 16/09/2020⁴³. No terceiro trimestre de 2020, as importações corresponderam, respectivamente, a 0,89% (20,5 mil m³) das vendas em julho, 0,59% (13,8 mil m³) em agosto e 0,41% (10,5 mil m³) em setembro.

⁴² http://www.camex.gov.br/resolucoes-camex-e-outros-normativos/58-resolucoes-da-camex/2483-resolucao-n-1-de-17-de-outubro-de-2019

⁴³ https://www.in.gov.br/web/dou/-/resolucao-gecex-n-88-de-14-de-setembro-de-2020-277434163


ÓLEO DIESEL S500


Volume de diesel S500 comercializado no terceiro trimestre de 2020 apresentou altas de 1,76% em relação ao mesmo período de 2019 e de 19,69% quando comparado ao segundo trimestre de 2020

Na etapa de revenda, em análise mensal, o preço médio do diesel S500 registrou variações de 6,04% na comparação entre junho (R\$ 3,064/litro) e julho (R\$ 3,249/litro) e 3,35% na comparação de julho com agosto (R\$ 3,358/litro). Dado que não houve pesquisa de preços no mês de setembro, não há dados disponíveis para análise nesse período.

Na etapa de distribuição, o preço médio do óleo diesel apresentou avanço de 14,45% no trimestre em análise, tendo passado de R\$ 2,623/litro em junho para R\$ 3,002/litro em setembro. Houve alta de 8,54% em julho (R\$ 2,847/litro), de 4,71% em agosto (R\$ 2,981/litro) e de 0,70% em setembro. No comparativo entre set/19 (R\$ 3,213/litro) e set/20, o preço médio de distribuição apresentou baixa de 6,57%.

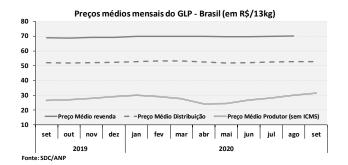
O preço de produção do óleo diesel (sem ICMS), na média nacional, passou de R\$ 1,921/litro em junho para R\$ 2,011/litro em setembro, aumento de 4,66%. Decompondo o intervalo, foram registrados avanços de 11,28% em julho (R\$ 2,138/litro) e 4,90% em agosto (R\$ 2,243/litro), e redução de 10,34% em setembro. Na comparação anual, o preço de produção em setembro de 2020 retrocedeu 21,55% em relação ao mesmo período de 2019 (R\$ 2,563/litro).

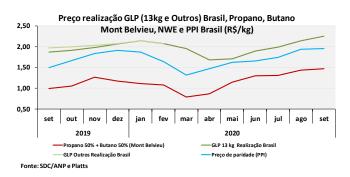
Com relação aos Preços de Paridade de Importação (PPI) do óleo diesel, o preço médio PPI nacional, calculado a partir da média simples dos preços médios PPI praticados nos diversos portos considerados, variou positivamente 1,23% no terceiro trimestre do ano, na comparação com junho (R\$ 1,7121/litro). Houve alta do preço médio PPI de 12,27% em julho (para R\$ 1,9222/litro) e 2,50% em agosto (para R\$ 1,9702/litro), além de queda de 12,03% em setembro (para R\$ 1,7332/litro). Na comparação anual, o preço médio PPI em setembro de 2020 caiu 22,87% em relação a setembro de 2019 (R\$ 2,2470 /litro).

No terceiro trimestre de 2020, os percentuais referentes às margens médias brutas de distribuição e de revenda e aos tributos estaduais e federais reduziram, enquanto as parcelas dos preços médios do diesel A e do biodiesel aumentaram em relação ao 2T/2020. Na penúltima semana de agosto, as margens médias brutas de revenda e de distribuição representaram 11,3% e 4,1%, respectivamente, do preço de revenda do diesel B S500. Já o percentual dos impostos (estaduais e federais) representou 23,8% e a soma das parcelas relativas aos preços do diesel A S500 e do biodiesel totalizou 60,8% do preço ao consumidor final do diesel B S500. Em relação à produção de diesel A, o volume total produzido no terceiro trimestre de 2020 (11,7 milhões de m³) foi 11,75% maior que o registrado no mesmo período do ano imediatamente anterior e 23,20% superior ao obtido no segundo trimestre de 2020. Em comparação aos respectivos meses do terceiro trimestre de 2019, o total produzido do combustível fóssil foi ampliado em 9,46% em jul/20 (3,8 milhões de m³), 11,40% em ago/20 (4,0 milhões de m³) e 14,51% em set/20 (3,9 milhões de m³). Na comparação mensal, houve alta de 7,93% em julho e 4,57% em agosto, com queda de 3,93% em setembro.

O volume de diesel B comercializado no terceiro trimestre de 2020 foi de 15,6 milhões de m³ frente a 15,4 milhões de m³ vendidos de julho a setembro de 2019, contabilizando uma alta de 1,76%. Ao longo do trimestre, o volume de vendas apresentou incremento de 11,39% em julho (5,23 milhões de m³), baixa de 1,28% em agosto (5,16 milhões de m³) e recuperação de 1,41% em setembro (5,23 milhões de m³). Na comparação do trimestre em análise com o segundo trimestre do ano (13,1 milhões de m³), o volume de vendas foi 19,69% superior. As vendas acumuladas de diesel até setembro de 2020 totalizaram 42,4 milhões de m³, volume 1,02% menor em comparação às vendas no mesmo período de 2019 (42,8 milhões de m³).

A importação de diesel A durante o terceiro trimestre de 2020 alcançou um total de 3,2 milhões de m³, volume 3,49% inferior em relação ao mesmo período de 2019 (3,4 milhões de m³) e 27,91% acima do registrado no segundo trimestre de 2020 (2,5 milhões de m³). Ao longo do terceiro trimestre, o volume de diesel importado aumentou 35,60% em julho (1,1 milhão de m³) e recuou 0,32% em agosto (1,1 milhão de m³) e 12,64% em setembro (985,4 mil m³). Dessa forma, o total de diesel A importado correspondeu a 20,76% do total de vendas realizadas no mercado doméstico no terceiro trimestre de 2020, valor superior ao observado no trimestre imediatamente anterior (19,42%) e inferior ao terceiro trimestre de 2019 (21,89%). O volume acumulado de importação de diesel A até o final de setembro de 2020 foi de 9,0 milhões de m³, valor 4,36% acima ao registrado no mesmo período de 2019 (8,7 milhões de m³).

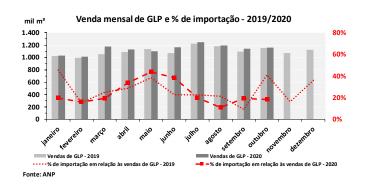

GLP

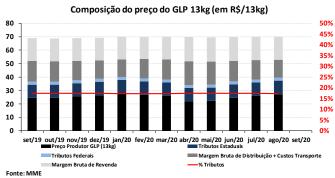

Vendas de GLP cresceram 2,31% no 3T/2020 em relação ao mesmo período de 2019, enquanto produção e importação caíram

Na etapa de revenda, o preço médio do GLP P-13 foi de R\$ 69,98/13kg em ago/20⁴⁴, variação positiva de 0,58% ao longo do trimestre (em jun/20, estava R\$ 69,58/13kg). Os meses do terceiro trimestre tiveram as seguintes variações mensais: 0,55% e 0,03% em julho e agosto, respectivamente. Na comparação anual, o preço de comercialização do GLP de uso residencial variou positivamente em 1,68% em relação a agosto de 2019.

Na etapa de distribuição, o preço médio do derivado registrou aumento de 1,44% ao longo do terceiro trimestre, saindo de R\$ 52,07/13kg em jun/20 para R\$ 52,82/13kg em set/20. Houve avanços respectivos de 1,06% e de 0,42% em julho e agosto, e recuo de 0,05% em setembro. Comparandose com set/19, o preço de distribuição do GLP de uso residencial variou positivamente em 1,66% ao final do trimestre em análise.

Na fase de produção, o preço médio nacional do GLP, sem ICMS, aumentou de R\$ 26,79/13kg em jun/20 para R\$ 31,42/13kg em set/20, elevação de 17,26%. Na comparação mensal, o preço do produtor apresentou altas de 4,71%, 7,09% e 4,56%, respectivamente. Em relação a set/19, o encerramento do terceiro trimestre de 2020 registrou incremento de 18,57%.


O preço de realização do GLP, que é o preço do produtor sem impostos, foi de R\$ 29,24/13kg para o mês de setembro de 2020, avanço de 18,79% ao longo do trimestre. Quanto ao preço de paridade de importação (PPI), que leva em conta os terminais de Suape e Santos, o valor médio foi de R\$ 25,4508/13kg em setembro, alta de 17,94% em relação a jun/20. O preço de butano/propano em Mont Belvieu, entre jun/20 e set/20, registrou alta de 13,25%, alcançando o valor de R\$ 19,13/13kg.


No terceiro trimestre de 2020, os percentuais referentes às margens médias brutas de distribuição e de revenda reduziram, enquanto as parcelas referentes aos tributos federais e estaduais se mantiveram inalteradas e a parcela referente ao preço médio do produtor aumentou em relação ao 2T/2020. Na penúltima semana de agosto, as margens médias brutas de revenda e de distribuição representaram 24,6% e 19,0%, respectivamente, do preço de revenda do GLP P-13. Já o percentual dos impostos (estaduais e federais) representou 17,4% e a parcela relativa ao preço do produtor representou 38,9% do preço ao consumidor final.

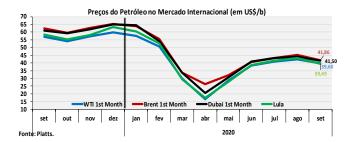
O volume total produzido de GLP entre jul/20 e set/20 foi de 1.954 mil m³, 8,04% superior quando comparado com o registrado no segundo trimestre de 2020 e 3,43% inferior à produção do terceiro trimestre de 2019. A produção do derivado no mês de set/20 (612,7 mil m³) foi 0,33% superior e 2,92% inferior em relação aos totais produzidos em jun/20 e set/19, respectivamente.

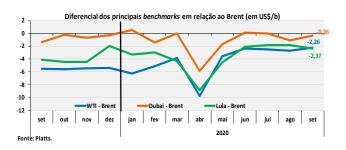
As vendas de GLP P-13 no terceiro trimestre de 2020 totalizaram 3.580 mil m³, alta de 5,42% em relação ao trimestre imediatamente anterior e elevação de 2,31% em relação ao terceiro trimestre de 2019. O total de vendas de GLP no mês de setembro de 2020 (1.139 mil m³) recuou 2,44% e avançou 4,06%, respectivamente, na comparação com jun/20 e set/19.

Entre julho e setembro de 2020, o volume total importado de GLP diminuiu 54,19% e 4,93%, respectivamente, na comparação com o segundo trimestre de 2020 e com o terceiro trimestre de 2019. As importações corresponderam a 19,51% do GLP vendido em setembro de 2020, percentual inferior ao verificado em junho de 2020 (38,43%) e superior ao observado em setembro de 2019 (9,25%).

⁴⁴ Dado que não houve pesquisa de preços no mês de setembro, não há dados disponíveis para análise nesse período.

PETRÓLEO


Preços do petróleo ensaiaram uma recuperação no terceiro trimestre de 2020, apesar de fecharem setembro em queda


Com o avanço da pandemia, apesar de algumas medidas de relaxamento, o consumo de petróleo seguiu em baixa, o que dificultou a recuperação dos preços. O avanço nos preços foi tímido, mas a cotação do barril, nos principais indicadores, superou os 40 dólares nos dois primeiros meses do terceiro trimestre, sofrendo uma queda em setembro. No mês de julho, a cotação média do WTI 1st alcançou US\$ 40,76/b, um aumento de 6,4% em relação a junho. Para os indicadores Brent 1st, Dubai 1st e Brasil Tupi, as variações nas cotações médias foram de 6,4%, 6,1% e 7,5%, respectivamente. Na comparação com o mesmo período do ano anterior, os preços médios dos indicadores do WTI 1st, Brent 1st, Dubai 1st e Brasil Tupi apresentam defasagem de 29,1%, 32,7%, 31,6% e 31,8%, respectivamente, apontando para a queda acentuada do consumo em decorrência da pandemia. Essa alta em julho esteve diretamente relacionada ao aumento da demanda após as medidas de flexibilização para enfrentar a covid-19. O acordo para a recuperação da economia europeia no pós-pandemia e a expectativa de uma vacina contra o coronavírus contribuíram para impulsionar os preços do petróleo em julho⁴⁵. A elevação de preços também refletiu a expectativa de queda nos estoques globais no curto prazo, de acordo com o EIA⁴⁶.

Em agosto, as cotações médias dos principais indicadores voltaram a subir. WTI 1st, Brent 1st, Dubai 1st e Brasil Tupi aumentaram 3,9%, 4,2%, 1,6% e 4,3%, respectivamente, como resultado da recuperação das grandes economias após o relaxamento dos lockdowns. Em contrapartida, analistas afirmaram que existia um excesso de oferta de combustíveis no mercado⁴⁷, o que contribuiu para frear a subida de preços. No comparativo de doze meses, os indicadores do WTI 1st, Brent 1st, Dubai 1st e Brasil Tupi mostraram defasagem de 22,7%, 24,3%, 25,6% e 21,1%, respectivamente.

Após quatro altas mensais consecutivas, os preços em setembro do WTI 1st, Brent 1st, Dubai 1st e Brasil Tupi caíram 6,5%, 7,2%, 5,7% e 8,7%, respectivamente, em relação ao mês anterior, recuando para patamares inferiores às cotações médias de julho. Comparando com setembro de 2019, as cotações médias desses produtos tiveram defasagens de 30,5%, 33,0%, 32,1% e 32,3%, respectivamente. O EIA reduziu sua estimativa de crescimento para o consumo chinês de petróleo em 2020 para 1,0 milhão de b/d⁴⁸. Fatores como um novo corte de preços da Arábia Saudita para países asiáticos, o aumento das infecções por covid-19 em 22 estados americanos, na Índia e no Reino Unido⁴⁹ e a elevação da produção de alguns grandes produtores, como o Iraque, que não cortou a sua produção em 400 mil b/d conforme o acordado, e a Rússia que expandiu a sua produção em 9%⁵⁰, influenciaram na redução do preço do petróleo em setembro.

De acordo com o EIA⁵¹, o consumo mundial de petróleo no terceiro trimestre de 2020 foi de 93,5 milhões de b/d, queda de 8,4% em relação ao mesmo período de 2019. O Brasil, em igual período, consumiu 3,0 milhões de b/d, o que significou uma redução de 8,6% na comparação com o terceiro trimestre de 2019 e um aumento de 12,1% em relação ao trimestre anterior. Esses resultados demostraram que a recuperação dos preços e volumes só deverá ocorrer após o fim da pandemia e a retomada da atividade econômica.

⁴⁵ Petróleo tem maior preço desde março. Disponível em https://g1.globo.com/economia/noticia/2020/07/21/petroleo-tem-maior-preco-desde-marco.ghtml. Acesso em: 22 dez. 2020.

⁴⁶ Fatos relevantes da indústria do óleo & gás. EPE. Edição 13, julho de 2020. Disponível em: <a href="https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacoe-410/topico-abertos/publicacoes/PublicacoesArquivos/publicacoe-410/topico-abertos/publicacoes/PublicacoesArquivos/publicacoes/PublicacoesArquivos/publicacoe-410/topico-abertos/publicacoes/Publicaco

^{472/}Fatos%20Relevantes%20da%20Ind%C3%BAstria%20do%20%C3%93leo%20e%20G%C3%A1s%20-%20Julho_2020.pdf>. Acesso em: 22 dez. 2020.

⁴⁷ Preços do petróleo caem em meio a incertezas sobre demanda. Disponível em https://br.reuters.com/article/idBRKBN25R2OA-OBRBS. Acesso em: 22 dez. 2020.

⁴⁸ Fatos relevantes da indústria do óleo & gás. EPE. Edição 15, setembro de 2020. Disponível em <a href="https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacoes-dados-abertos/publicacoes/Publicacoes-dados-abertos/publicacoes

^{472/}Fatos%20Relevantes%20da%20Ind%C3%BAstria%20do%20%C3%93leo%20e%20G%C3%A1s%20-%20Setembro_2020.pdf >. Acesso em: 22 dez 2020

 $^{^{49}}$ Petróleo tem forte queda com preocupações sobre recuperação da demanda. Disponível em

https://g1.globo.com/economia/noticia/2020/09/08/petroleo-tem-forte-queda-com-preocupacoes-sobre-recuperacao-da-demanda.ghtml. Acesso em: 22 dez. 2020.

⁵⁰ Petróleo fecha em queda com dúvidas sobre economia e temores de excesso de oferta. Disponível em

https://www.istoedinheiro.com.br/petroleo-fecha-em-queda-com-duvidas-sobre-economia-e-temores-de-excesso-de-oferta/. Acesso em: 22 dez. 2020.

 $^{^{\}rm 51}$ World Petroleum and Other Liquids Consumption (million barrels per day). Disponível em

https://www.eia.gov/outlooks/steo/tables/pdf/3dtab.pdf>. Acesso em: 23 dez. 2020.

GÁS NATURAL

Preços do gás natural se recuperaram e atingiram os patamares de janeiro/2020

O terceiro trimestre de 2020 teve início com uma continuação da retração no consumo de gás natural no Brasil e no mundo. Os preços do energético foram fortemente afetados pela pandemia, que derrubou o consumo e a produção, causando retração econômica na maioria dos países, com exceção da China⁵², cuja economia recuperou-se mais rapidamente.

Em julho de 2020, o consumo de gás natural no Brasil cresceu 1,2% em relação ao mês anterior, enquanto na comparação com o mesmo período de 2019 ocorreu retração de 14,3%, consequência da pandemia de covid-19⁵³. Em agosto, o processo de retomada da atividade econômica com o relaxamento das restrições não foi suficiente para elevar o consumo de gás natural, com exceção do setor comercial, que cresceu 21,6% em relação a julho. O consumo total, na comparação com julho, manteve-se estável, mas em relação a agosto de 2019, houve uma queda de 26,7%⁵⁴. No mês de setembro, o consumo de gás natural voltou a subir comparando-se com o mês anterior, avançando 0,61%. Na comparação anual, a demanda seguiu em queda, com retração de 29,5%. A Abegás estima que os volumes de gás voltem a apresentar crescimento a partir de 2021, acompanhando o crescimento econômico do País. Segundo Marcelo Mendonça, diretor de Estratégia e Mercado da entidade, a vacinação em massa no póspandemia contribuirá para a recuperação da economia e o gás natural terá um papel importante neste novo cenário⁵⁵.

Os preços do gás natural tiveram aumento em julho de 2020, com maior destaque para o NBP Index, que subiu 26,3% em relação ao mês anterior. Na mesma base de comparação, Henry Hub, GNL spot Japão/Coreia e DES Brazil tiveram reajustes de 8,1%, 12,9% e 9,5%, respectivamente. Em doze meses houve queda de preços acentuada e, com exceção do Henry Hub, que apresentou baixa de 26,7%, todos os outros indicadores tiveram redução superior a 50%, refletindo os efeitos da pandemia nas principais economias do planeta. Em relação ao GNL, a recuperação da demanda seguiu lenta nos principais compradores (China, Japão e Coreia do Sul), temerosos de uma segunda onda do novo coronavírus. Encomendas dos Estados Unidos foram canceladas e navios de GNL carregados estiveram ociosos em águas da Ásia e da Europa⁵⁶.

No mês de agosto, na comparação com julho, os preços subiram de forma mais intensa. Henry Hub, NBP Index, GNL spot Japão/Coreia e DES Brazil elevaram os preços em 31,1%, 43,1%, 56,8% e 56,7%, respectivamente. O Henry Hub subiu 2,0% em relação ao mesmo período do ano anterior, enquanto os outros indicadores não conseguiram recuperar os preços em doze meses. Os indicadores NBP Index, GNL spot Japão/Coreia e DES Brazil apresentaram uma defasagem de preços de 30,9%, 15,0% e 17,3%, respectivamente, em relação a agosto de 2019. Temperaturas mais quentes que o normal no período elevaram a demanda por gás natural para a geração de energia elétrica nos Estados Unidos⁵⁷. Os preços do NBP (Inglaterra), TFF (Holanda) e JKF (Ásia) colaboraram para a retomada da competitividade do gás natural liquefeito (GNL) dos EUA nos mercados mundiais⁵⁸.

Os preços do gás natural mantiveram a trajetória de alta no mês de setembro de 2020, com exceção do Henry Hub, que caiu 13,6% em relação ao mês anterior. Os indicadores NBP Index, GNL spot Japão/Coreia e DES Brazil tiveram elevações respectivas de 42,7%, 26,7% e 29,8%. No comparativo anual, apesar dos últimos aumentos ocorridos ao longo do terceiro trimestre, os preços não se recuperaram nos indicadores Henry Hub, NBP Index, GNL spot Japão/Coreia e DES Brazil, que tiveram defasagem de 24,1%, 7,6%, 10,4% e 14,9%, respectivamente. Nos Estados Unidos, a queda de preços foi causada pelas temperaturas mais amenas no final do verão⁵⁹, que causaram a redução do consumo de gás natural e das exportações de GNL⁶⁰.

⁵² PIB da China cresce 4,9% no 3º trimestre de 2020 na comparação com o mesmo período de 2019. Disponível em

https://g1.globo.com/economia/noticia/2020/10/19/pib-da-china-cresce-49percent-no-3o-trimestre-de-2020.ghtml. Acesso em: 16 dez. 2020.

⁵³ Consumo de gás para a geração elétrica cai 14,3% em julho, diz Abegás. Disponível em

< https://canalenergia.com.br/noticias/53150504/consumo-de-gas-para-a-geracao-eletrica-cai-143-em-julho-diz-abegas>. Acesso em: 16 dez. 2020.

⁵⁴ Indústria amplia em 2,6% consumo de gás natural em agosto ante julho de 2020; comércio cresce 21,6%. Disponível em

. Acesso em: 16 dez. 2020.

⁵⁵ Abegás: Consumo de gás natural dá sinais de retomada em setembro e sobe 0,61%. Disponível em:

https://economia.uol.com.br/noticias/estadao-conteudo/2020/12/08/abegas-consumo-de-gas-natural-da-sinais-de-retomada-em-setembro-e-sobe-061.htm>. Acesso em: 16 dez. 2020.

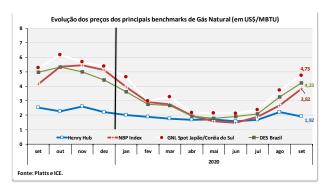
⁵⁶ Fatos relevantes da indústria do óleo & gás. EPE, edição 13, julho de 2020. Disponível em <a href="https://www.epe.gov.br/sites-pt/publicacoes-dados abertos/publicacoes/PublicacoesArquivos/publicacoes-dados abertos/publicacoes/PublicacoesArquivos/publicacoes-dados abertos/publicacoes/PublicacoesArquivos/publicacoes-dados abertos/publicacoes-dados ab

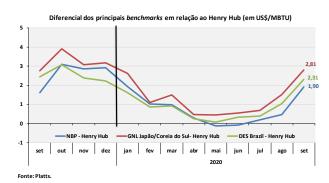
^{472/}Fatos%20Relevantes%20da%20Ind%C3%BAstria%20do%20%C3%93leo%20e%20G%C3%A1s%20-%20Julho_2020.pdf>. Acesso em: 17 dez. 2020

⁵⁷ Futuros de gás natural dos EUA em alta após onda de calor no Sul dos EUA. Disponível em https://br.investing.com/news/commodities-news/futuros-de-gas-natural-dos-eua-em-alta-apos-onda-de-calor-no-sul-dos-eua-136291. Acesso em: 22 dez. 2020.

⁵⁸ Fatos relevantes da indústria do óleo & gás. EPE, edição 14, agosto de 2020. Disponível em <a href="https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/Publicacoes

^{472/}Fatos%20Relevantes%20da%20Ind%C3%BAstria%20do%20%C3%93leo%20e%20G%C3%A1s%20-%20Agosto_2020.pdf>. Acesso em: 22 dez. 2020.


⁵⁹ Gás natural cai devido a previsões de temperaturas amenas nos EUA. Disponível em https://br.investing.com/news/commodities-news/g%C3%A1s-natural-cai-devido-a-previs%C3%B5es-de-temperaturas-amenas-nos-eua-95461. Acesso em: 22 dez. 2020.


⁶⁰ Fatos relevantes da indústria do óleo & gás. EPE, edição 15, setembro de 2020. Disponível em <a href="https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacoes-dados-abert

^{472/}Fatos%20Relevantes%20da%20Ind%C3%BAstria%20do%20%C3%93leo%20e%20G%C3%A1s%20-%20Setembro_2020.pdf>. Acesso em: 22 dez. 2020.

Boletim Trimestral de Preços e Volumes de Combustíveis – Edição n° 7 – 3º Trimestre /2020

O diferencial de preços entre os outros indicadores e o Henry Hub, que havia caído fortemente no segundo trimestre em relação às médias históricas, voltou a subir no terceiro trimestre. Em setembro, o diferencial de preços atingiu a máxima do ano em termos relativos para todos os indicadores analisados na comparação com o Henry Hub. Em termos absolutos, com exceção do NBP, que alcançou o segundo maior diferencial anual, GNL Japão/Coreia do Sul e DES Brazil alcançaram o maior diferencial no mês de setembro.

		Unidade	jun/20	jul/20	ago/20	set/20	Variação % (set-20/jun-20)	Variação % 12 meses (set-20/set-19)
Petróleo	WTI 1st Month	US\$/b	38,30	40,76	42,37	39,60	3,39%	-30,47%
	Brent 1st Month	US\$/b	40,67	43,28	45,10	41,86	2,91%	-32,96%
	Dubai 1st Month	US\$/b	40,79	43,29	43,99	41,50	1,73%	-32,10%
Gás Natural	Henry Hub	US\$/MBTU	1,57	1,69	2,22	1,92	22,50%	-24,08%
	NBP Index	US\$/MBTU	1,48	1,87	2,68	3,82	157,99%	-7,64%
	GNL Spot Japão/ Coréia do Sul	US\$/MBTU	2,11	2,38	3,73	4,73	124,28%	-10,49%
	DES Brazil Netforward Month 1	US\$/MBTU	1,90	2,08	3,26	4,23	122,63%	-14,89%
Gasolina	Preço Médio de Revenda	R\$/I	3,964	4,144	4,237	-	-	-
	Preço Médio do Distribuidor	R\$/I	3,489	3,691	3,776	3,834	9,89%	-1,13%
	Preço Médio do Produtor (sem ICMS)	R\$/I	2,372	2,596	2,671	2,631	10,91%	-0,51%
	Preço Médio de Realização (sem Tributos)	R\$/I	1,480	1,704	1,779	1,739	17,49%	-0,77%
	PPI Média Brasil	R\$/I	1,620	1,754	1,746	-	-	-
Diesel	Preço Médio de Revenda	R\$/I	3,064	3,249	3,358	-	-	-
	Preço Médio do Distribuidor	R\$/I	2,623	2,847	2,981	3,002	14,45%	-6,57%
	Preço Médio do Produtor* (sem ICMS)	R\$/I	1,921	2,138	2,243	2,011	4,66%	-21,55%
	Preço Médio de Realização (sem Tributos)	R\$/I	1,570	1,786	1,891	1,659	5,71%	-24,97%
	PPI Média Brasil	R\$/I	1,712	1,922	1,962	-	-	-
dПБ	Preço Médio Revendedor P-13	R\$/13 kg	69,58	69,96	69,98	-	-	-
	Preço Médio Distribuidor P-13	R\$/13 kg	52,07	52,62	52,84	52,82	1,44%	1,66%
	Preço Médio Produtor P-13 (sem ICMS)	R\$/13 kg	26,79	28,06	30,05	31,42	17,26%	18,57%
	Preço Médio de Realização P-13 (sem Tributos)	R\$/kg	1,89	1,99	2,14	2,25	18,79%	20,23%
	PPI Média Brasil	R\$/kg	1,66	1,74	1,91	-	-	-
Etanol	Preço de Revenda Brasil	R\$/I	2,655	2,739	2,768	-	-	-
	Preço Médio do Distribuidor Brasil	R\$/I	2,283	2,365	2,398	2,371	3,85%	-5,95%
	Preço Médio do Produtor Brasil (sem Tributos)	R\$/I	1,643	1,637	1,718	1,795	9,22%	4,57%

^{*} O preço médio do produtor calculado pela ANP exclui o ICMS.

** Médias de preços semanais para etanol hidratado no estado de São Paulo, publicados pelo CEPEA/USP (que não incluem frete e impostos), acrescidos do valor de PIS/Cofins.