RELATÓRIO FINAL PROGRAMA DE COMPARAÇÃO INTERLABORATORIAL ETANOL

Superintendência de Biocombustíveis e Qualidade de Produtos – SBQ Centro de Pesquisas e Análises Tecnológicas – CPT

Coordenação da Qualidade de Combustíveis – CQC

PIC – 31ª Edição Novembro de 2023

PROGRAMA DE COMPARAÇÃO INTERLABORATORIAL **ETANOL**

PIC – 31ª EDIÇÃO NOVEMBRO DE 2023

Superintendência de Biocombustíveis e Qualidade de Produtos – SBQ Centro de Pesquisas e Análises Tecnológicas – CPT Coordenação da Qualidade de Combustíveis – CQC

Agência Nacional do Petróleo, Gás Natural e Biocombustíveis

Novembro, 2023

Diretor-Geral

Rodolfo Saboia

Diretores

Symone Araújo

Daniel Maia Vieira

Fernando Moura

Cláudio J. de Souza

Superintendência de Biocombustíveis e Qualidade de Produtos

Carlos Orlando Enrique da Silva – Superintendente de Biocombustíveis e Qualidade de Produtos Fábio da Silva Vinhado – Superintendente Adjunto de Biocombustíveis e Qualidade de Produtos

Centro de Pesquisas e Análises Tecnológicas - CPT

Alex Rodrigues Brito de Medeiros – Coordenador do CPT Cristiane Brito Costa – Assessora Técnica de Pesquisas e Análises Tecnológicas

Coordenação da Qualidade de Combustíveis - CQC

Ednéia Caliman – Coordenadora de Qualidade de Combustíveis Valéria Silva Ferreira – Assessora Técnica de Qualidade de Combustíveis

Elaboração

Thiago Karashima – Especialista em Regulação Rossine Amorim Messias – Especialista em Regulação

SUMÁRIO

1	INTRODUÇÃO	5
	OBJETIVO	
	LISTA DOS LABORATÓRIOS PARTICIPANTES	
4	PREPARAÇÃO DOS ITENS DE ENSAIO DE PROFICIÊNCIA	9
	CRONOGRAMA	
6	HOMOGENEIDADE E ESTABILIDADE	9
7	ANÁLISE ESTATÍSTICA	
7.1	MÉTODO DE OBTENÇÃO DO VALOR DESIGNADO, DA SUA INCERTEZA E DO DESVIO-PADRÃO PARA AVALIAÇ	ÇÃO
DE D	ESEMPENHO	
7.2	Avaliação do Desempenho dos Participantes	. 10
7.3	Reprodutibilidade do grupo	
	RECLAMAÇÕES, APELAÇÕES E QUESTIONAMENTOS	
9	RESULTADOS E GRÁFICOS	.12
9.1	Aspecto	. 13
9.2	COR	. 14
9.3	Teor de Hidrocarbonetos	. 15
9.4	Massa Específica a 20 °C Digital	. 16
9.5	Massa Específica a 20 °C Manual	
9.6	Teor Alcoólico, Digital	. 20
9.7	TEOR ALCOÓLICO, MANUAL	. 22
9.8	PH	. 24
9.9	Condutividade Elétrica	. 26
9.10	O ACIDEZ TOTAL	. 28
9.13	L TEOR DE ENXOFRE	. 30
9.12	2 Teor de Etanol	. 32
9.13	B TEOR DE ÁGUA	. 33
9.14	4 Teor de Cloreto e Sulfato	. 35
9.15		
9.16	5 TEOR DE SÓDIO	. 37
9.17	•	
10	SUMÁRIO DAS ALTERAÇÕES	.39

1 INTRODUÇÃO

O Programas de Comparação Interlaboratorial em Combustíveis – PIC é um programa de ensaio de proficiência que visa a avaliação do desempenho de laboratórios que realizam a análise da qualidade dos combustíveis automotivos gasolina, óleo diesel e etanol. O provedor deste ensaio de proficiência é o Centro de Pesquisas e Análises Tecnológicas – CPT, da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis – ANP.

Esta rodada do programa de comparação interlaboratorial em combustíveis contou com a participação de **sessenta e oito laboratórios**, pertencentes a empresas de inspeção da qualidade, usinas produtoras, bases de distribuição, instituições de pesquisa, órgãos governamentais e laboratórios independentes.

2 OBJETIVO

Entre os objetivos do PIC da ANP, destacam-se:

- Avaliar o desempenho individual dos laboratórios para os ensaios propostos;
- Monitorar continuamente o desempenho dos laboratórios;
- Propiciar subsídios aos laboratórios para a identificação para a solução de problemas analíticos;
- Agregar valor ao controle da qualidade dos laboratórios e
- Identificar diferenças interlaboratoriais nas análises propostas.

3 LISTA DOS LABORATÓRIOS PARTICIPANTES

AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS — CENTRO DE PESQUISAS E ANÁLISES TECNOLÓGICAS

AL SUKKAR BIOTECNOLOGIA INDUSTRIAL LTDA — AL SUKKAR

AMSPEC BRASIL INSPEÇÕES TÉCNICAS LTDA — AMSPEC ARATU

AMSPEC BRASIL INSPEÇÕES TÉCNICAS LTDA — AMSPEC RIO GRANDE

AMSPEC BRASIL INSPEÇÕES TÉCNICAS LTDA — AMSPEC SANTOS

AMSPEC BRASIL INSPEÇÕES TÉCNICAS LTDA — AMSPEC SUAPE

ANALYSIS BRASIL — ANALYSIS BRASIL/ ARA

ANALYSIS BRASIL — ANALYSIS BRASIL/ BL

ANALYSIS BRASIL — ANALYSIS BRASIL/ BV

ANALYSIS BRASIL — ANALYSIS BRASIL/ EST

ANALYSIS BRASIL — ANALYSIS BRASIL/ JQ

ANALYSIS BRASIL — ANALYSIS BRASIL/ MD

ANALYSIS BRASIL — ANALYSIS BRASIL/ MN

ANALYSIS BRASIL — ANALYSIS BRASIL/ MTB

ANALYSIS BRASIL — ANALYSIS BRASIL/ PN

ANALYSIS BRASIL — ANALYSIS BRASIL/ PV

ANALYSIS BRASIL — ANALYSIS BRASIL/ STM

ANALYSIS BRASIL — ANALYSIS BRASIL/STN

ANALYSIS BRASIL — ANALYSIS BRASIL/ THE

ANALYSIS BRASIL — ANALYSIS BRASIL/ VLH

BUREAU VERITAS DO BRASIL INSPEÇÕES LTDA — LABORATÓRIO BVI IPOJUCA/PE

BUREAU VERITAS DO BRASIL INSPEÇÕES LTDA — LABORATÓRIO BVI SANTOS/SP

BUREAU VERITAS DO BRASIL INSPEÇÕES LTDA — LABORATÓRIO BVI SÃO LUÍS/MA

BUREAU VERITAS DO BRASIL INSPEÇÕES LTDA. — LABORATÓRIO BVI MADRE DE DEUS / BA

CAOA MONTADORA DE VEÍCULOS LTDA — CENTRO DE PESQUISAS E EFICIÊNCIA ENERGÉTICA - CPEE

CERGRAN INSPEÇÕES DO BRASIL LTDA — CERGRAN - FILIAL PORTO NACIONAL/TO

CERGRAN INSPEÇÕES DO BRASIL LTDA — CERGRAN - FILIAL SÃO FRANCISCO DO CONDE/BA

CHRONION ANÁLISES QUÍMICAS E COMÉRCIO LTDA. — CHRONION

DOISS INSPECTION — DOISS INSPECTION SÃO LUÍS

DOISS INSPECTION LTDA — DOISS INSPECTION CABEDELO

DOISS INSPECTION LTDA — DOISS INSPECTION MARACANAU

FUNDAÇÃO DE APOIO A SERVIÇOS TÉCNICOS, ENSINO E FOMENTO A PESQUISA — LABORATÓRIO DE COMBUSTÍVEIS E LUBRIFICANTES - UFC

FUNDAÇÃO DE DESENVOLVIMENTO DA PESQUISA — LABORATÓRIO DE ENSAIOS DE COMBUSTÍVEIS DA UFMG (LEC-UFMG)

FUNDAÇÃO PARA O DESENVOLVIMENTO DA UNESP - FUNDUNESP — CEMPEQC - CENTRO DE MONITORAMENTO E PESQUISA DA QUALIDADE DE COMBUSTÍVEIS, BIOCOMBUSTÍVEIS E DERIVADOS DE PETRÓLEO

FUNDAÇÃO UNIVERSIDADE REGIONAL DE BLUMENAU — LABORATÓRIO DE ANÁLISES DE COMBUSTÍVEIS - LAC

INSTITUTO BRASILEIRO DE TECNOLOGIA E REGULAÇÃO - IBTR — LABCOM-IBTR

INTEGRATED PETROLEUM EXPERTISE COMPANY - SERVICOS EM PETROLEO LTDA — EUROFINS AMBIENTAL SP

INTERTEK DO BRASIL INSPEÇÕES LTDA — LABORATÓRIO SANTOS

INTERTEK DO BRASIL INSPEÇÕES LTDA — PARANAGUÁ

IPT - INSTITUTO DE PESQUISAS TECNOLÓGICAS DO ESTADO DE SÃO PAULO S/A — LABORATÓRIO DE BIOENERGIA E EFICIÊNCIA ENERGÉTICA - LBE / ENERGIA

LABORATÓRIO DE ANÁLISE E PESQUISA EM QUÍMICA ANALÍTICA DE PETRÓLEO E BIOCOMBUSTÍVEIS/ FUNDACAO UNIVERSIDADE FEDERAL DO MARANHAO — LABORATÓRIO DE ANÁLISE E PESQUISA EM QUÍMICA ANALÍTICA DE PETRÓLEO E BIOCOMBUSTÍVEIS/ DEPARTAMENTO DE TECNOLOGIA QUÍMICA

PETROLEO BRASILEIRO S.A. PETROBRAS — CENPES/PDIDMS/PPL/LABQ

PETROM - PETROQUÍMICA MOGI DAS CRUZES — LCQ

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL — LABORATÓRIO DE ENSAIOS EM ÓLEOS LUBRIFICANTES E COMBUSTÍVEIS - LELCO

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL – SENAI DEPARTAMENTO REGIONAL DE MINAS GERAIS/CENTRO DE INOVAÇÃO E TECNOLOGIA SENAI — LABORATÓRIO DE ENSAIOS EM COMBUSTÍVEIS

SGS DO BRASIL LTDA - FILIAL SANTOS — SGS SANTOS

SGS DO BRASIL LTDA — SGS - ARATU

SGS DO BRASIL LTDA — SGS-PARANAGUÁ

SGS DO BRASIL LTDA — SGS-RIO GRANDE

SGS DO BRASIL LTDA — SGS-SÃO LUÍS

SGS DO BRASIL LTDA — SGS-SUAPE

SOUZA NETO & SOUZA LTDA — AGROANALISE LABORATÓRIOS INTEGRADOS

SUPERINSPECT LTDA — LABORATÓRIO PETROQUÍMICO-SUPERINSPECT / UNIDADE SANTOS

TEREOS ACUCAR E ENERGIA BRASIL — TEREOS/TANABI

TEREOS AÇÚCAR E ENERGIA BRASIL S.A — LABORATÓRIO INDUSTRIAL

TEREOS AÇÚCAR E ENERGIA BRASIL SA — TEREOS UNIDADE ANDRADE

TEREOS ACÚCAR E ENERGIA BRASIL SA - UNIDADE MANDÚ — LABORATÓRIO INDUSTRIAL

TEREOS ACÚCAR ENERGIA BRASIL — LABORATÓRIO UNIDADE SÃO JOSÉ

THECA ANÁLISES PETROQUÍMICAS E INSPEÇÕES — THECA UBERLÂNDIA

UNICAMP — CENTRAL ANALÍTICA - IQ

UNIVERSIDADE FEDERAL DE GOIÁS — LABORATÓRIO DE MÉTODOS DE EXTRAÇÃO E SEPARAÇÃO UNIVERSIDADE FEDERAL DE PERNAMBUCO — LABORATÓRIO DE COMBUSTÍVEIS DA UFPE

UNIVERSIDADE FEDERAL DO PARÁ - UFPA — LABORATÓRIO DE PESQUISA E ANÁLISE DE COMBUSTÍVEIS - LAPAC

UNIVERSIDADE FEDERAL DO PARANÁ — LACAUT - LABORATÓRIO DE ANÁLISES DE COMBUSTÍVEIS AUTOMOTIVOS

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO/ ESCOLA DE QUÍMICA — LABORATÓRIO DE COMBUSTÍVEL E DERIVADOS DE PETRÓLEO - LABCOM

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE — LABORATÓRIO DE COMBUSTÍVEIS E LUBRIFICANTES DA UFRN

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL - UFRGS — LABORATÓRIO DE COMBUSTÍVEIS VULCANO LABORATÓRIO DE ANÁLISES QUÍMICAS S/S LTDA — VULCANO PAULÍNIA/SP

4 PREPARAÇÃO DOS ITENS DE ENSAIO DE PROFICIÊNCIA

Os itens de ensaio foram preparados pelo CPT, a partir da matriz de combustível automotivo **etanol hidratado aditivado** adquirido em posto de revenda de combustíveis.

As alíquotas de 1 L e 0,5 L foram obtidas a partir da homogeneização por recirculação, por tempo suficiente, e envasadas por gravidade. Foram utilizados conjuntos novos, sem uso, de frascos de vidro âmbar, tampas e batoques. Apesar dos esforços despendidos na inspeção, e limpeza dos frascos, **houve suspeita de contaminação dos itens de ensaio por sujidades ou resíduos dos frascos**. Nesse sentido, aqueles mensurandos que possam ter sido afetados pela contaminação não foram avaliados.

Nenhum participante relatou a ocorrência de vazamentos nos itens de ensaio.

5 CRONOGRAMA

Atividade	Data
Recebimento de inscrições	18 a 29 de agosto
Preparação dos itens de ensaio	28 de agosto a 1º de setembro
Retirada dos itens de ensaio pelos participantes	04 a 15 de setembro
Realização das análises	18 a 29 de setembro
Último dia para envio dos resultados	30 de setembro
Envio do relatório preliminar	06 de novembro
	10 de novembro (etanol)
	17 de novembro (biodiesel)
	20 de novembro (biodiesel)
Envio do relatório final	17 de novembro
	24 de novembro

6 HOMOGENEIDADE E ESTABILIDADE

Com base na experiência acumulada ao longo das edições anteriores, nas quais ficou demonstrada a homogeneidade e a estabilidade dos itens de ensaio, decidimos assumir essa premissa. Isto é, partimos do princípio de que os itens de ensaio são homogêneos e estáveis ao longo do período do programa. Além disso, a norma ISO 4259 para determinação de dados de precisão em normas de ensaio para produtos de petróleo adota essa premissa.

7 ANÁLISE ESTATÍSTICA

A análise estatística foi realizada por meio do software Excel, e quando necessário, foram realizadas análises pelo software estatístico R. Quando necessário, resultados reportados pelos participantes e valores finais dos estimadores foram arredondados para a quantidade de algarismos significativos ou casas decimais adequadas, conforme ABNT NBR 5891 (regra do par mais próximo), ou de acordo com a norma de ensaio mais empregada.

7.1 Método de obtenção do valor designado, da sua incerteza e do desviopadrão para avaliação de desempenho

Para resultados de natureza quantitativa (grandezas), o valor designado foi o valor de consenso dos resultados reportados pelos participantes. Optou-se pelo valor de consenso por não dispormos de um valor de referência estabelecido para os mensurandos, assim como pela ausência de um laboratório de referência para determinação do valor designado.

O modelo estatístico adotado para estimação do valor de consenso (x_{pt}) e do desviopadrão para avaliação da proficiência (σ_{pt}) foi a análise robusta, descrita como "algoritmo A", no item C.3 da norma ABNT NBR ISO/IEC 13528:2015. Como resultado da análise robusta pelo algoritmo A, temos que $x_{pt}=x^*$ e $\sigma_{pt}=s^*$, onde x^* é a média robusta e s^* é o desvio-padrão robusto. Esse método é baseado na mediana do conjunto de dados e sua principal característica é a atenuação do efeito dos valores dispersos (outliers), por meio de sucessivas iterações nas quais os dados são ajustados. Após essa etapa são calculadas as estimativas dos parâmetros estatísticos (média robusta e desvio-padrão robusto).

Em alguns casos, a análise estatística robusta não foi capaz de atingir a convergência esperada após um número razoável de iterações, sendo necessária a exclusão de valores dispersos antes da estimação do valor de consenso e do desvio-padrão para avaliação da proficiência. A avaliação de valores dispersos (outliers) utilizou o teste de Grubbs, para detecção de um valor disperso apenas e o teste GESD (Generalized Extreme Studentized Deviate) para detecção de múltiplos valores dispersos simultâneos.

Os valores classificados como dispersos, que foram eventualmente excluídos dos cálculos de x_{vt} e de σ_{vt} , tiveram seu desempenho avaliado.

Para resultados de natureza qualitativa (atributos, escalas ordinais, etc), foi adotado como valor designado a moda dos resultados, exceto quando indicado especificamente

7.2 Avaliação do Desempenho dos Participantes

O desempenho dos participantes será avaliado por meio do escore z (z-score):

 $|z| \le 2$ indica desempenho satisfatório

2 < |z| < 3 indica desempenho <u>questionável</u>

 $|z| \ge 3$ indica desempenho insatisfatório

O z-score é dado pela fórmula:

$$z_i = \frac{\left(x_i - x_{pt}\right)}{\sigma_{pt}}$$

onde x_i é o resultado reportado pelo participante, x_{pt} é o valor de consenso e σ_{pt} é o desviopadrão robusto.

Quando a incerteza do valor designado, $u(x_{pt})$, foi maior ou igual a 30% do desviopadrão robusto, foi necessário incluir $u(x_{pt})$ no denominador do escore de avaliação de desempenho, passando a ser denominado z'-score:

$$z'_{i} = \frac{\left(x_{i} - x_{pt}\right)}{\sqrt{\sigma_{pt}^{2} + u^{2}(x_{pt})}}$$

Para resultados de natureza qualitativa, valores diferentes do valor designado foram classificados como insatisfatórios, exceto quando indicado especificamente.

7.3 Reprodutibilidade do grupo

O valor estimado da reprodutibilidade do grupo é calculado a partir da premissa de que a diferença entre dois resultados quaisquer $(x_1 e x_2)$ obtidos pelo grupo segue uma distribuição t de Student. Assim, a diferença $|x_1 - x_2|$ será superior à reprodutibilidade do grupo, R', em um caso em vinte. A reprodutibilidade do grupo é calculada da seguinte forma

$$R' = t_{n-1; 0,05} \times \sqrt{2} \times s^*$$

em que $t_{n-1;\,0,05}$ é o valor crítico da distribuição t de Student, com n-1 graus de liberdade e nível de confiança de 95%; s^* é o desvio-padrão robusto.

A comparação de R' com o valor de reprodutibilidade publicado na norma de ensaio fornece um parâmetro de desempenho do grupo no que diz respeito ao nível de precisão.

8 RECLAMAÇÕES, APELAÇÕES E QUESTIONAMENTOS

Reclamações, apelações e questionamentos podem ser submetidos ao CPT por meio do endereço de e-mail pic@anp.gov.br.

As reclamações, apelações e questionamentos serão registrados e tratados pelo CPT. Caso se mostrem pertinentes, ações corretivas e de melhoria serão implementadas.

9 RESULTADOS E GRÁFICOS

As tabelas e gráficos a seguir resumem os resultados e as análises de desempenho desta rodada do PIC.

Nos gráficos, as seguintes legendas significam:

Legenda	Definição
X_pt	Valor de consenso, ou valor designado
u(X_pt)	Incerteza padrão de X_pt
2* u(X_pt)	Incerteza expandida de X_pt
sigma_pt	Desvio-padrão robusto

9.1 Aspecto

Aspecto, visual

 $\label{lem:period} De vido \,\grave{a}\,suspeita\,de\,eventual\,contaminação\,dos\,frascos,\,optamos\,por\,não\,avaliar\,o\,desempenho\,neste\,ensaio.$

Laboratório	Resultado Reportado	Laboratório	Resultado Reportado
A486	L.I.I.	O443	L.I.I.
A602	LII	P232	L.I.I.
A686	Límpido e Isento de Impurezas	P449	L.I.I.
B100	Límpido e isento de impurezas	P646	Límpido e Isento de Impurezas
B397	Limpido Isento de impureza	P746	L.I.I.
B835	Límpido e isento de impurezas	P939	LII Límpido e isento de impurezas
B914	L.I.I.	Q461	LIMPIDO E ISENTO DE IMPUREZAS
C694	L.I.I.	Q557	LII
C982	Límpido e Isento de Impurezas	Q647	L.I.I.
D200	LIMPIDO E ISENTO DE IMPUREZAS	Q944	Límpido e Isento de Impurezas (LII)
D300	Límpido	R237	LII- Límpido e Isento de Impurezas
D916	L.I.I.	R567	Límpido e Isento de Impurezas - LII
D990	Límpido e Ausente de material particulado	R945	Límpido e Isento de Impurezas
E695	Limpido e isento de impurezas	S150	L.I.I.
E845	Límpido e isento de impurezas - LII	S464	Límpido e isento de impurezas
E917	L.I.I.	S572	Límpido e Isento de Impurezas
F310	Límpido e isento do impurezas	T170	L.I.I.
F996	Límpido e isento de impurezas	T241	Límpido e isento de impureza
G410	Límpido e Isento de Impurezas (LII)	T468	Límpido e Isento de Impurezas
G845	LII	T660	LII
J418	Límpido e isento de impurezas.	T775	Límpido e isento de material particulado 24,0 ºC
K125	L.I.I.	V374	LII
K433	L.I.I	W670	LÍMPIDO E ISENTO DE IMPUREZAS
K863	L.I.I	W901	L.I.I.
L126	Límpido	W967	Límpido e isento de impurezas
M334	L.I.I.	X185	L.I.I.
M530	Límpido e Isento de Impurezas - L.I.I.	X387	L.I.I.
M933	LII	Y189	LII
N138	L.I.I.	Y263	L.I.I.
N223	Límpido e isento de impurezas	Y673	Límpido e Isento de Impurezas - LII
N341	LII	Y818	Límpido
N438	LII	Y975	LIMPIDO E ISENTO DE IMPUREZAS
N936	LII	Z674	L.I.I.
0143	Límpido com Impurezas	Z909	Límpido e isento de material particulado

Cor, visual

Optamos por não realizar a análise de desempenho, no caso do ensaio de cor visual, pelo seguinte motivo:

- subjetividade: não existe escala de possíveis valores a serem reportados, ficando o resultado totalmente dependente do juízo pessoal de cada observador.

Observação: o item de ensaio era o etanol hidratado combustível aditivado.

Estatística Moda: Verde

Laboratório	Resultado Reportado	Laboratório	Resultado Reportado
A486	Verde	O443	Esverdeado
A602	Verde	P232	Verde
A686	Esverdeada	P449	Verde
B100	Verde	P646	Verde
B397	Esverdeado	P746	Verde
B835	Verde	P939	VERDE
B914	Verde	Q461	VERDE
C694	Verde	Q557	Esverdeado
C982	Verde	Q647	Verde
D200	VERDE	Q944	Verde
D300	Verde	R237	Verde
D916	Verde	R567	Verde
D990	Verde	R945	Esverdeado
E695	Verde	S150	Verde
E845	Verde	S464	Verde
E917	Verde	S572	Verde
F310	Verde	T170	Verde
F996	Verde	T241	Líquido esverdeado
G410	Verde	T468	Verde
G845	Esverdeada	T660	VERDE
J418	Esverdeado	T775	Verde
K125	Verde	V374	Verde
K433	verde	W670	Verde
K863	Verde	W901	Verde
L126	Verde	W967	Verde
M334	Verde	X185	Verde
M530	Verde	X387	Verde
M933	Verde	Y189	Verde esmeralda
N138	Verde	Y263	Verde
N223	Incolor	Y673	Verde
N341	esverdeado	Y818	Verde
N438	Verde	Y975	VERDE
N936	Verde	Z674	Verde
O143	Verde	Z909	Verde

9.3 Teor de Hidrocarbonetos

Teor de Hidrocarbonetos, NBR 13993

A NBR 13993:2018 prevê o resultado "não detectado" quando não se visualiza qualquer volume da camada oleosa. Isto é, quando não existe camada oleosa aparente, reporta-se como "não detectado".

Na versão anterior, NBR 13993:2013 (versão corrigida de 2015), não existia a previsão do resultado "não detectado", mas apenas "<2" (quando não havia camada oleosa aparente, ou quando o volume da camada oleosa era maior que zero e inferior a 0,5 mL).

Frente a isso, nesta rodada do PIC, consideramos os valores "não detectado" e "<2" como **satisfatórios**.

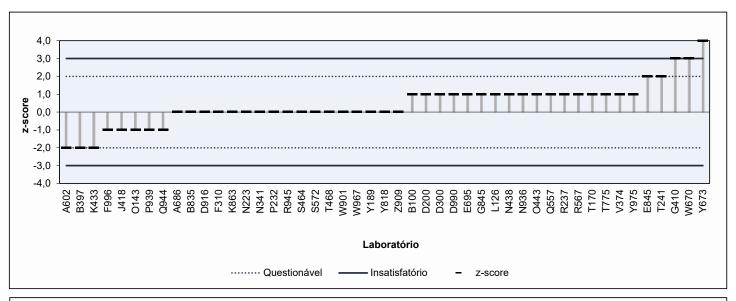
Os valores "ND", "<1" e "0", apesar de não previstos no rol de possíveis resultados da NBR 13993, foram considerados **satisfatórios**.

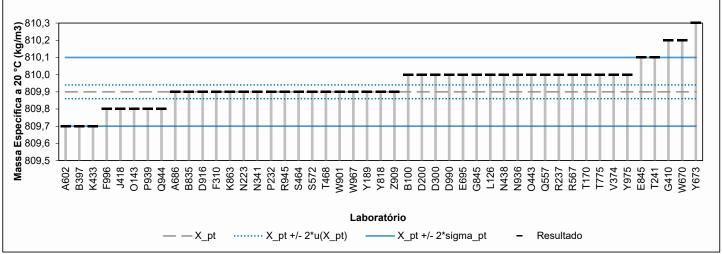
Estatística

Moda: "Não detectado"/"<2"

Laboratório Resultado Reportado Desempenho Laboratório Resultado	o Reportado Desempenho
A486 <2 Satisfatório O443 <2	Satisfatório
A602 <2,0 Satisfatório P232 Não Dete	ectável Satisfatório
A686 Não detectado Satisfatório P449 < 2	Satisfatório
B100 0 Satisfatório P646	
B397 Não Detectado Satisfatório P746 < 2	Satisfatório
B835 0 Satisfatório P939 Não dete	ectado Satisfatório
B914 <2 Satisfatório Q461	
C694 < 2 Satisfatório Q557 <2	Satisfatório
C982 2 Satisfatório Q647 < 2	Satisfatório
D200 Q944	
D300 R237 0	Satisfatório
D916 Não Detectável Satisfatório R567 0	Satisfatório
D990 menor que 2 Satisfatório R945 3,0	Insatisfatório
E695 3 Insatisfatório S150 < 2	Satisfatório
E845 ND Satisfatório S464 Não dete	ectado Satisfatório
E917 <2 Satisfatório S572 Não dete	ectado Satisfatório
F310 0 Satisfatório T170	
F996 Não detectado Satisfatório T241 3	Insatisfatório
G410 Não detectado Satisfatório T468 Não Dete	ectado Satisfatório
G845 <2 % volume Satisfatório T660	
J418 2 Insatisfatório T775 0	Satisfatório
K125 <2 Satisfatório V374 3	Insatisfatório
K433 <2 Satisfatório W670 1	Satisfatório
K863 Não Detectável Satisfatório W901 Não Dete	ectável Satisfatório
L126 W967 Não dete	ectado Satisfatório
M334 <2 Satisfatório X185 <2	Satisfatório
M530 X387 < 2	Satisfatório
M933 <2,0 Satisfatório Y189 0	Satisfatório
N138 <2 Satisfatório Y263 <2	Satisfatório
N223 Y673 0	Satisfatório
N341 2 Insatisfatório Y818	
N438 <2,0 Satisfatório Y975	
N936 <2,0 Satisfatório Z674 <2	Satisfatório
O143 Z909 O	Satisfatório

9.4 Massa Específica a 20 °C Digital


Massa Específica a 20°C, Digital [kg/m3]

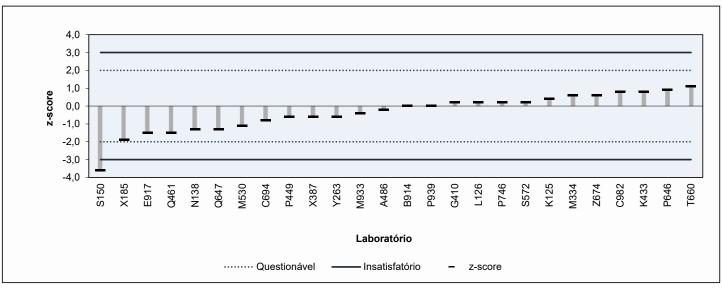

NBR 15639, ASTM D4052

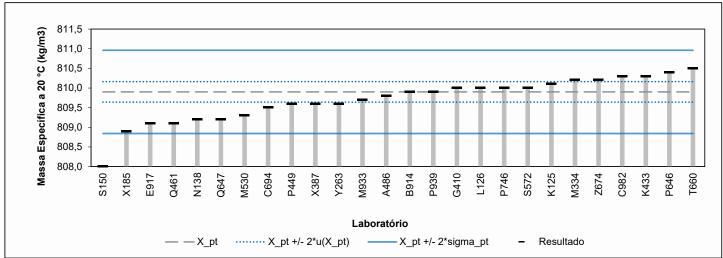
Laboratório A486	Resultado	z-score	Observação	Método	Ano/Versã
A602	809,7	-2,0		ASTM D4052 (densímetro digital)	2022
A686	809,9	0,0		ASTM D4052 (densímetro digital)	2022
B100	810,0	1,0		NBR 15639 (densímetro digital)	2016
B397	809,7	-2,0		NBR 15639 (densímetro digital)	2016
B835	809,9	0,0		NBR 15639 (densimetro digital)	2016
	009,9	0,0		NBK 13039 (delisililetto digital)	2010
B914					
C694					
C982					
D200	810,0	1,0		NBR 15639 (densímetro digital)	2016
D300	810,0	1,0		NBR 15639 (densímetro digital)	2016
D916	809,9	0,0		ASTM D4052 (densímetro digital)	2022
D990	810,0	1,0		NBR 15639 (densímetro digital)	2016
E695	810,0	1,0		NBR 15639 (densímetro digital)	2016
E845	810,1	2,0		NBR 15639 (densímetro digital)	2016
E917					
F310	809,9	0,0		NBR 15639 (densímetro digital)	2016
F996	809,8	-1,0		NBR 15639 (densímetro digital)	2016
G410	810,2	3,0	Insatisfatório	NBR 15639 (densímetro digital)	2016
G845	810,0	1,0		ASTM D4052 (densímetro digital)	2022
J418	809,8	-1,0		NBR 15639 (densímetro digital)	2016
K125				,	
K433	809,7	-2,0		ASTM D4052 (densímetro digital)	2022
K863	809,9	0,0		NBR 15639 (densímetro digital)	2016
L126	810,0	1,0		NBR 15639 (densímetro digital)	2011
M334	0.0,0	.,0		. 12. t 10000 (dollollinollo digital)	20
M530					
M933					
N138					
N223	809,9	0,0		NRD 15630 (dons/matra digital)	2016
N341	809,9	0,0		NBR 15639 (densímetro digital) ASTM D4052 (densímetro digital)	2010
N438	810,0				
	,	1,0		ASTM D4052 (densímetro digital)	2022
N936	810,0	1,0		ASTM D4052 (densímetro digital)	2022
O143	809,8	-1,0		NBR 15639 (densímetro digital)	2016
O443	810,0	1,0		ASTM D4052 (densímetro digital)	2022
P232	809,9	0,0		ASTM D4052 (densímetro digital)	2022
P449					
P646					
P746					
P939	809,8	-1,0		NBR 15639 (densímetro digital)	2016
Q461					
Q557	810,0	1,0		ASTM D4052 (densímetro digital)	2022
Q647					
Q944	809,8	-1,0		ASTM D4052 (densímetro digital)	2018a
R237	810,0	1,0		NBR 15639 (densímetro digital)	2016
R567	810,0	1,0		NBR 15639 (densímetro digital)	2016
R945	809,9	0,0		NBR 15639 (densímetro digital)	2016
S150					
S464	809,9	0,0		NBR 15639 (densímetro digital)	2016
S572	809,9	0,0		ASTM D4052 (densímetro digital)	2022
T170	810,0	1,0		ASTM D4052 (densímetro digital)	2022
T241	810,1	2,0		NBR 15639 (densímetro digital)	2016
T468	809,9	0,0		NBR 15639 (densímetro digital)	2016
T660					
T775	810,0	1,0		ASTM D4052 (densímetro digital)	2022
V374	810,0	1,0		NBR 15639 (densímetro digital)	2016
W670	810,2	3,0	Insatisfatório	ASTM D4052 (densímetro digital)	2022
W901	809,9	0,0		ASTM D4052 (densímetro digital)	2022
W967	809,9	0,0		NBR 15639 (densímetro digital)	2016
X185	200,0	5,5		(as.is.iiotio digital)	_0.0
X387					
Y189	809,9	0,0		NBR 15639 (densímetro digital)	2016
Y263	000,0	0,0		HEAT 10000 (dollalifiello digital)	2010
Y673	810,3	4,0	Insatisfatório	NBR 15639 (densímetro digital)	2016
			-irisatisiatuil0	NBR 15639 (densímetro digital)	2016
Y818	809,9 810.0	0,0		,	
Y975 Z674	810,0	1,0		NBR 15639 (densímetro digital)	2016
Z909	809,9	0,0		NRP 15630 (densimate digital)	2016
2303	6,600	0,0		NBR 15639 (densímetro digital)	2010

Nº de resultados Satisfatórios	44
Valor de Consenso (X_pt)	809,9
Desvio Padrão Robusto (sigma_pt)	0,10
Mediana	809,9
Média Aritmética	809,9
Desvio Padrão Aritmético	0,12
Repro do Grupo	0,3
Repro ASTM D4052	0,52
Repro NBR 15639	0,83
Incerteza padrão: u(X_pt)	0,02
Incerteza/Desvio Padrão Robusto	0,20

Frequências	
NBR 15639	30
ASTM D4052	17

9.5 Massa Específica a 20 °C Manual

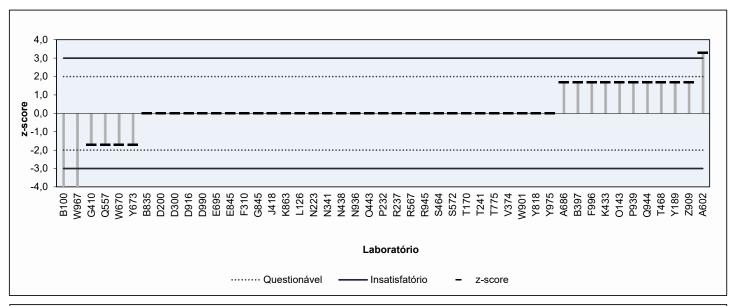

Massa Específica a 20°C, Manual [kg/m3]

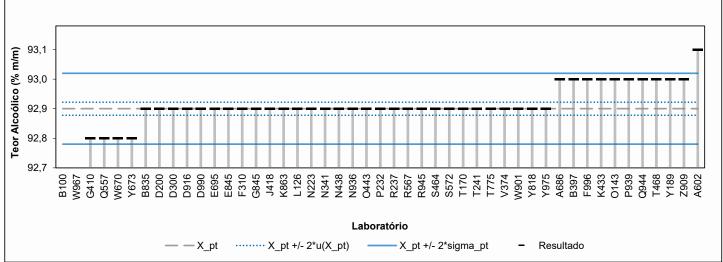

NBR 5992

Laboratório A486	Resultado 809,8	z-score -0,2	Observação
A602	, .	-,	
A686 B100			
B397			
B835			
B914	809,9	0,0	
C694 C982	809,5 810,3	-0,8 0,8	
D200	,.	-,-	
D300			
D916 D990			
E695			
E845	000.4	4.5	
E917 F310	809,1	-1,5	
F996			
G410	810,0	0,2	
G845 J418			
K125	810,1	0,4	
K433	810,3	0,8	
K863 L126	810,0	0,2	
M334	810,2	0,6	
M530	809,3	-1,1	
M933 N138	809,7 809,2	-0,4 -1,3	
N223	003,2	-1,5	
N341			
N438 N936			
O143			
O443			
P232	900.6	0.6	
P449 P646	809,6 810,4	-0,6 0,9	
P746	810,0	0,2	
P939	809,9	0,0	
Q461 Q557	809,1	-1,5	
Q647	809,2	-1,3	
Q944			
R237 R567			
R945			
S150 S464	808,0	-3,6	Insatisfatório
S464 S572	810,0	0,2	
T170	,-	-,-	
T241			
T468 T660	810,5	1,1	
T775	,-	.,.	
V374			
W670 W901			
W967			
X185	808,9	-1,9	
X387 Y189	809,6	-0,6	
Y263	809,6	-0,6	
Y673			
Y818 Y975			
Z674	810,2	0,6	
Z909			

Nº de resultados Satisfatórios	25
Valor de Referência	809,9
Desvio Padrão Robusto (sigma_pt)	0,53
Mediana	809,9
Média Aritmética	809,7
Desvio Padrão Aritmético	0,56
Repro do Grupo	1,5
Repro NBR 5992	0,83
Incerteza padrão: u(X_pt)	0,13
Incerteza/Desvio Padrão Robusto	0,25

Valor de referência: valor de consenso do método digital.

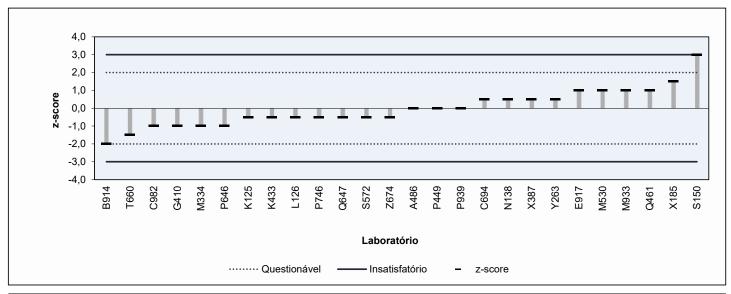

Teor Alcoólico, Digital [% m/m]

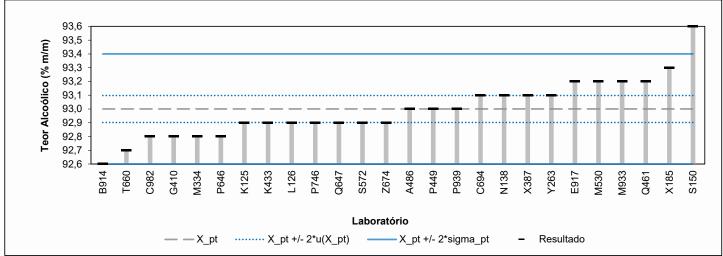

NBR 15639

Laboratório A486	Resultado	z-score	Observação
A602	93,1	3,3	Insatisfatório
A686	93,0	1,7	inoutionation of
B100	82,9	-166,7	Insatisfatório
B397	93,0	1,7	outiolatorio
B835	92,9	0,0	
B914	02,0	0,0	
C694			
C982			
D200	92,9	0,0	
D300	92,9		
D916	92,9	0,0	
		0,0	
D990 E695	92,9 92,9	0,0	
E845	92,9	0,0	
E917	92,9	0,0	
	02.0	0.0	
F310	92,9	0,0	
F996	93,0	1,7	
G410	92,8	-1,7	
G845	92,9	0,0	
J418	92,9	0,0	
K125			
K433	93,0	1,7	
K863	92,9	0,0	
L126	92,9	0,0	
M334			
M530			
M933			
N138			
N223	92,9	0,0	
N341	92,9	0,0	
N438	92,9	0,0	
N936	92,9	0,0	
O143	93,0	1,7	
O443	92,9	0,0	
P232	92,9	0,0	
P449	- ,-	-,-	
P646			
P746			
P939	93,0	1,7	
Q461	00,0	.,.	
Q557	92,8	-1,7	
Q647	32,0	-1,7	
Q944	93,0	1,7	
R237	92,9	0,0	
R567	92,9	0,0	
	92,9		
R945 S150	92,9	0,0	
S464	02.0	0.0	
	92,9	0,0	
S572	92,9	0,0	
T170	92,9	0,0	
T241	92,9	0,0	
T468	93,0	1,7	
T660	00.0	0.0	
T775	92,9	0,0	
V374	92,9	0,0	
W670	92,8	-1,7	
W901	92,9	0,0	
W967	92,3	-10,0	Insatisfatório
X185			
X387			
Y189	93,0	1,7	
Y263			
Y673	92,8	-1,7	
Y818	92,9	0,0	
Y975	92,9	0,0	
Z674			
Z909	93,0	1,7	

Nº de resultados Satisfatórios	44
Valor de Consenso (X_pt)	92,9
Desvio Padrão Robusto (sigma_pt)	0,06
Mediana	92,9
Média Aritmética	92,9
Desvio Padrão Aritmético	0,11
Repro do Grupo	0,2
Repro NBR 15639	0,3
Incerteza padrão: u(X_pt)	0,01
Incerteza/Desvio Padrão Robusto	0,18

Possível erro de digitação no resultado do laboratório B100, por isso esse resultado foi excluído dos cálculos do valor de consenso, dos desvios padrão robusto e aritimético e da média aritimética.

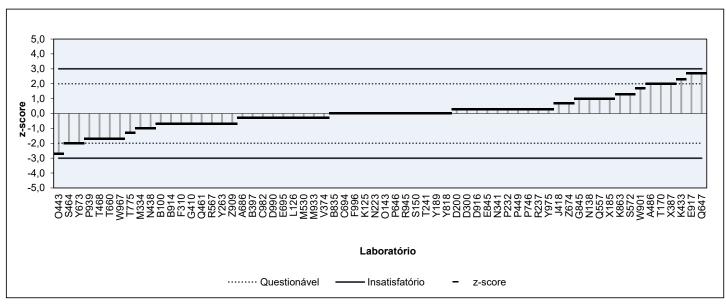

9.7 Teor Alcoólico, Manual

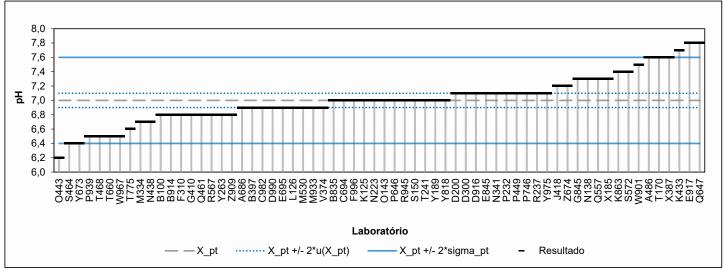

Teor Alcoólico, Manual [% m/m]

NBR 5992

Laboratório A486	Resultado 93,0	z-score 0,0	Observação
A602 A686			
B100			
B397			
B835 B914	92,6	-2,0	
C694	93,1	0,5	
C982 D200	92,8	-1,0	
D300			
D916			
D990 E695			
E845			
E917 F310	93,2	1,0	
F996			
G410	92,8	-1,0	
G845 J418			
K125	92,9	-0,5	
K433 K863	92,9	-0,5	
L126	92,9	-0,5	
M334	92,8	-1,0	
M530 M933	93,2 93,2	1,0 1,0	
N138	93,1	0,5	
N223 N341			
N438			
N936			
O143 O443			
P232			
P449	93,0	0,0	
P646 P746	92,8 92,9	-1,0 -0,5	
P939	93,0	0,0	
Q461 Q557	93,2	1,0	
Q647	92,9	-0,5	
Q944			
R237 R567			
R945			
S150 S464	93,6	3,0	Insatisfatório
S572	92,9	-0,5	
T170 T241			
T468			
T660	92,7	-1,5	
T775 V374			
W670			
W901 W967			
X185	93,3	1,5	
X387	93,1	0,5	
Y189 Y263	93,1	0,5	
Y673	••	-,-	
Y818 Y975			
Z674	92,9	-0,5	
Z909			

Nº de resultados Satisfatórios	25
Valor de Consenso (X_pt)	93,0
Desvio Padrão Robusto (sigma_pt)	0,20
Mediana	93,0
Média Aritmética	93,0
Desvio Padrão Aritmético	0,21
Repro do Grupo	0,6
Repro NBR 5992	0,3
Incerteza padrão: u(X_pt)	0,05
Incerteza/Desvio Padrão Robusto	0,25


рΗ

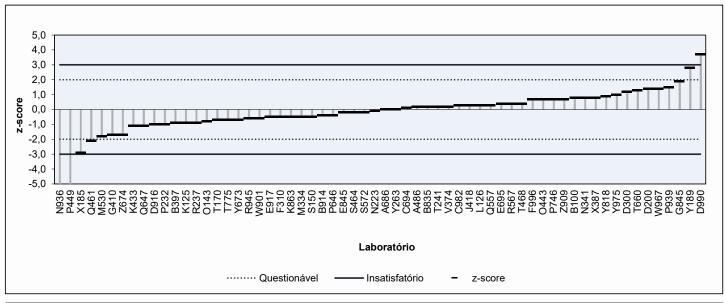

NBR 10891

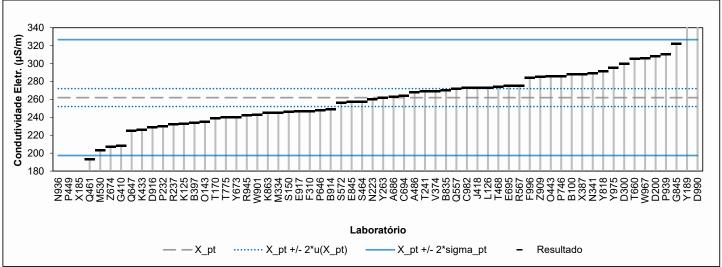
Laboratório	Resultado	z-score	Observação
A486	7,6	2,0	
A602			
A686	6,9	-0,3	
B100	6,8	-0,7	
B397	6,9	-0,3	
B835	7,0	0,0	
B914	6,8	-0,7	
C694	7,0	0,0	
C982	6,9	-0,3	
D200	7,1	0,3	
D300	7,1	0,3	
D916	7,1	0,3	
D990	6,9	-0,3	
E695	6,9	-0,3	
E845	7,1	0,3	
E917	7,8	2,7	Questionável
F310	6,8	-0,7	
F996	7,0	0,0	
G410	6,8	-0,7	
G845	7,3	1,0	
J418	7,2	0,7	
K125	7,0	0,0	
K433	7,7	2,3	Questionável
K863	7,4	1,3	
L126	6,9	-0,3	
M334	6,7	-1,0	
M530	6,9	-0,3	
M933	6,9	-0,3	
N138	7,3	1,0	
N223	7,0	0,0	
N341	7,1	0,3	
N438	6,7	-1,0	
N936			
O143	7,0	0,0	
O443	6,2	-2,7	Questionável
P232	7,1	0,3	
P449	7,1	0,3	
P646	7,0	0,0	
P746	7,1	0,3	
P939	6,5	-1,7	
Q461	6,8	-0,7	
Q557	7,3	1,0	
Q647	7,8	2,7	Questionável
Q944			
R237	7,1	0,3	
R567	6,8	-0,7	
R945	7,0	0,0	
S150	7,0	0,0	
S464	6,4	-2,0	
S572	7,4	1,3	
T170	7,6	2,0	
T241	7,0	0,0	
T468	6,5	-1,7	
T660	6,5	-1,7	
T775	6,6	-1,3	
V374	6,9	-0,3	
W670		4 -	
W901	7,5	1,7	
W967	6,5	-1,7	
X185	7,3	1,0	
X387	7,6	2,0	
Y189	7,0	0,0	
Y263	6,8	-0,7	
Y673	6,4	-2,0	
Y818	7,0	0,0	
Y975	7,1	0,3	
Z674	7,2	0,7	
Z909	6,8	-0,7	

Nº de resultados Satisfatórios	60
Valor de Consenso (X_pt)	7,0
Desvio Padrão Robusto (sigma_pt)	0,30
Mediana	7,0
Média Aritmética	7,0
Desvio Padrão Aritmético	0,33
Repro do Grupo	0,8
Repro NBR 10891	0,4
Incerteza padrão: u(X_pt)	0,1
Incerteza/Desvio Padrão Robusto	0,17

 $Resultados\,arredondados\,para\,uma\,casa\,decimal.$

9.9 Condutividade Elétrica


Condutividade Elétrica [µS/m]


NBR 10547 ISO 17308

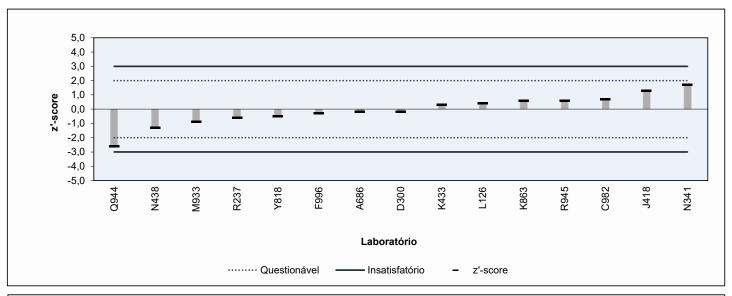
Laboratório	Resultado	z-score	Observação	Método	Ano/Versã
A486	268	0,2	Obscivação	NBR 10547	2016
	200	0,2		NDN 10541	2010
A602					
A686	263	0,0		NBR 10547	2016
B100	288	0,8		NBR 10547	2016
B397	234	-0,9		NBR 10547	2016
B835	270	0,2		NBR 10547	2016
B914	249	-0,4		NBR 10547	2016
C694	264	0,1		NBR 10547	2016
C982	273	0,3		NBR 10547	2017
				NBR 10547	
D200	308	1,4			2016
D300	300	1,2		NBR 10547	2016
D916	229	-1,0		NBR 10547	2016
D990	383	3,7	Insatisfatório	NBR 10547	2016
E695	275	0,4		NBR 10547	2016
E845	257	-0,2		NBR 10547	2016
E917	247	-0,5		NBR 10547	2016
F310	247	-0,5		NBR 10547	2016
F996	284	0,7		NBR 10547	2016
G410	208	-1,7		NBR 10547	2016
G845	322	1,9		NBR 10547	2016
J418	273	0,3		NBR 10547	2016
K125	233	-0,9		NBR 10547	2016
K433	226	-1,1		NBR 10547	2016
K863	245	-0,5		NBR 10547	2016
L126	273	0,3		NBR 10547	2016
M334	245	-0,5		NBR 10547	2016
M530	203	-1,8		NBR 10547	2016
M933	200	.,0			20.0
N138					
	000	0.4		NDD 40547	0040
N223	260	-0,1		NBR 10547	2016
N341	289	0,8		NBR 10547	2013
N438					
N936	16	-7,6	Insatisfatório	NBR 10547	2016
O143	235	-0,8		NBR 10547	2016
O443	286	0,7		NBR 10547	2016
P232	230	-1,0		NBR 10547	2016
P449	66	-6,1	Insatisfatório	NBR 10547	2016
P646	248	-0,4	III Oddiolatorio	NBR 10547	2016
P746	286			NBR 10547	2016
		0,7			
P939	310	1,5		NBR 10547	2016
Q461	193	-2,1	Questionável	NBR 10547	2016
Q557	272	0,3		NBR 10547	2016
Q647	225	-1,1		NBR 10547	2016
Q944					
R237	232	-0,9		NBR 10547	2016
R567	275	0,4		NBR 10547	2016
R945	242	-0,6		NBR 10547	2016
S150	246	-0,5		NBR 10547	2016
S464	257	-0,2		NBR 10547	2016
S572	256	-0,2		NBR 10547	2016
T170	239	-0,7		NBR 10547	2016
T241	269	0,2		NBR 10547	2016
T468	274	0,4		NBR 10547	2016
T660	305	1,3		NBR 10547	2016
T775	240	-0,7		NBR 10547	2016
V374	269	0,2		NBR 10547	2016
W670	200	0,2			20.0
W901	242	0.6		NBR 10547	2016
	243	-0,6 1.4		NBR 10547	2016
W967	306	1,4	Ower time to the		2016
X185	168	-2,9	Questionável	NBR 10547	2016
X387	288	0,8		NBR 10547	2016
Y189	352	2,8	Questionável	NBR 10547	2016
Y263	262	0,0		NBR 10547	2016
Y673	240	-0,7		NBR 10547	2016
Y818	291	0,9		NBR 10547	2016
Y975	295	1,0		NBR 10547	2016
Z674	207	-1,7		NBR 10547	2016
Z909	285	0,7		NBR 10547	2016

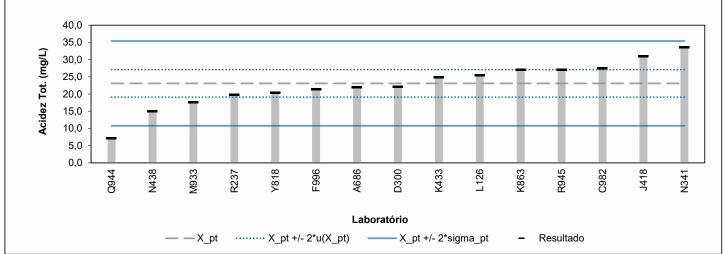
Nº de resultados Satisfatórios	56
Valor de Consenso (X_pt)	262
Desvio Padrão Robusto (sigma_pt)	32,3
Mediana	261
Média Aritmética	255
Desvio Padrão Aritmético	53,5
Repro do Grupo	91
Repro NBR 10547	22
Incerteza padrão: u(X_pt)	5
Incerteza/Desvio Padrão Robusto	0,15

Resultados arredondados para número inteiro.

9.10 Acidez Total

Acidez Total [mg/L] NBR 9866, NBR 16047 ISO 17315


Laboratório A486	Resultado	z'-score	Observação	Método	Ano/Versão
A602 A686	22,0	-0,2		NBR 9866	2012
B100					
B397					
B835 B914					
C694					
C982	27,5	0,7		NBR 9866	2012
D200	,-	-,			
D300	22,1	-0,2		NBR 9866	2012
D916					
D990 E695					
E845					
E917					
F310					
F996	21,3	-0,3		NBR 16047	2012
G410					
G845 J418	31,0	1,3		NBR 9866	2012
K125	31,0	1,0		NBIX 9000	2012
K433	24,8	0,3		NBR 9866	2012
K863	27,0	0,6		NBR 9866	
L126	25,5	0,4		NBR 9866	2012
M334					
M530 M933	17,5	-0,9		NBR 16047	2012
N138	,0	0,0			20.2
N223					
N341	33,6	1,7		NBR 9866	2012
N438 N936	15,0	-1,3		NBR 16047	2012
O143					
O443					
P232					
P449					
P646 P746					
P939					
Q461					
Q557					
Q647	7.4	0.6	Questionável	A CTM D4045	2010
Q944 R237	7,1 19,7	-2,6 -0,6	Questionavei	NBR 16047	2019 2012
R567	.0,.	0,0			20.2
R945	27,0	0,6		NBR 9866	2012
S150					
S464 S572					
T170					
T241					
T468					
T660					
T775 V374					
W670					
W901					
W967					
X185 X387					
Y189					
Y263					
Y673	a	a -			
Y818	20,3	-0,5		NBR 9866	2012
Y975 Z674					
Z909					


Nº de resultados Satisfatórios	14
Valor de Consenso (X_pt)	23,1
Desvio Padrão Robusto (sigma_pt)	6,16
Mediana	22,1
Média Aritmética	22,8
Desvio Padrão Aritmético	6,59
Repro do Grupo	18,7
Repro NBR 9866	6,0
Incerteza padrão: u(X_pt)	2,00
Incerteza/Desvio Padrão Robusto	0,32

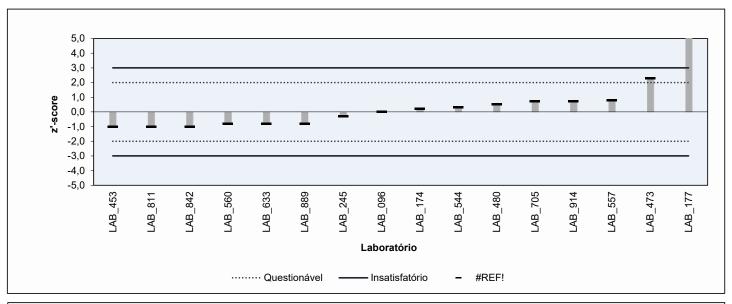
Frequências	
NBR 9866	11
NBR 16047	4
ASTM D1045	1

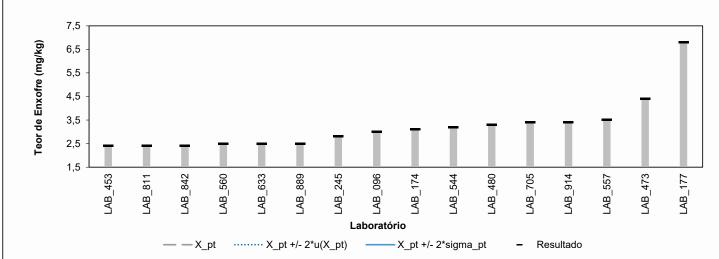
Resultados arredondados para uma casa decimal.

Razão entre incerteza e desvio padrão robusto maior que 0,3: adotado z'-score.

9.11 Teor de Enxofre

Teor de Enxofre [mg/kg]


ASTM D5453 EN 15485, EN 15486, EN 15837


Laboratório A486	Resultado	Método	Ano/Versã
A602 A686 B100			
B397 B835 B914 C694	2,9	ASTM D5453	2019a
C982 D200 D300 D916			
D990 E695 E845			
E917 F310 F996 G410	3,5	ASTM D5453	2019a
G845 J418 K125	2,4	ASTM D5453	2019
K433 K863 L126 M334 M530			
M933 N138 N223	0.0	AOTA D5450	0040
N341 N438 N936 O143	2,8	ASTM D5453 ASTM D5453	2019 2019a
O443 P232 P449 P646	2,1	A3 IW D3453	20194
P746 P939 Q461 Q557 Q647			
Q944 R237 R567 R945	32,4	EN15837	2010
S150 S464 S572 T170			
T241 T468 T660 T775 V374	3,5 3,8	ASTM D5453 ASTM D5453	2019 2019a
W670 W901 W967 X185 X387 Y189			
Y263 Y673 Y818 Y975 Z674			
Z909	0,0	ASTM D5453	2019a

Nº de resultados Satisfatórios	
Valor de Consenso (X_pt)	
Desvio Padrão Robusto (sigma_pt)	
Mediana	2,9
Média Aritmética	6,0
Desvio Padrão Aritmético	9,96
Repro do Grupo	
Repro ASTM D5453	1,3
Incerteza padrão: u(X_pt)	•
Incerteza/Desvio Padrão Robusto	•

Devido ao baixo número de resultados, não foi possível realizar a avaliação de desempenho neste ensaio.

Repro ASTM baseada na mediana.

9.12 Teor de Etanol

Teor de Etanol [% volume]

NBR 16041 ASTM D5501

Laboratório A486	Resultado	Método	Ano/Versão
A602			
A686			
B100			
B397			
B835			
B914			
C694 C982	94,60	NBR 16041	2015
D200	34,00	NDIX 10041	2010
D300			
D916			
D990			
E695			
E845			
E917 F310			
F996	95,80	NBR 16041	2015
G410	30,00	NDIX 10041	2010
G845	92,17	ASTM D5501	2020
J418			
K125			
K433			
K863			
L126			
M334 M530			
M933			
N138			
N223			
N341	94,59	NBR 16041	2012
N438			
N936			
0143	94,10	ASTM D5501	2020
O443 P232			
P449			
P646			
P746			
P939			
Q461			
Q557			
Q647	05.00	A OTH A DECOM	0000
Q944 R237	95,38	ASTM D5501	2020
R567			
R945	97,30	NBR 16041	2015
S150	, , , ,		
S464			
S572			
T170	04.00	NDD 40044	0045
T241	94,90	NBR 16041	2015
T468 T660			
T775			
V374			
W670			
W901	92,70	ASTM D5501	2020
W967			
X185			
X387 Y189			
Y 169 Y263			
Y673			
Y818			
Y975			
Z674			
Z909			

Nº de resultados Satisfatórios	
Valor de Consenso (X_pt)	
Desvio Padrão Robusto (sigma_pt)	
Mediana	94,6
Média Aritmética	94,6
Desvio Padrão Aritmético	1,55
Repro do Grupo	
Repro ASTM D5501	1,0
Incerteza padrão: u(X_pt)	
Incerteza/Desvio Padrão Robusto	
_	

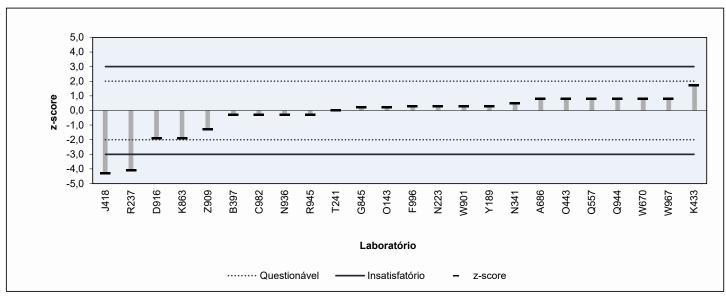
Resultados arredondados para duas casas decimais.

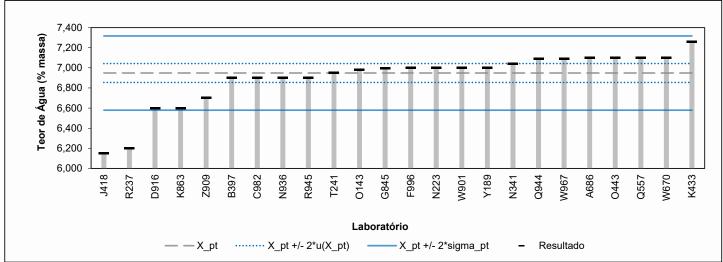
Devido ao baixo número de resultados, não foi possível realizar a avaliação de desempenho neste ensaio.

 $Repro\,ASTM\,base ada\,na\,mediana.$

9.13 Teor de Água

Teor de Água [% massa]


NBR 15531, NBR 15888 ASTM E203, E1064


Laboratório A486	Resultado	z-score	Observação	Método	Ano/Versão
A602 A686	7,100	0,8		NBR 15888	2022
B100 B397 B835 B914	6,900	-0,3		NBR 15888	2016
C694 C982 D200 D300	6,900	-0,3		NBR 15531	2016
D916 D990 E695 E845 E917	6,600	-1,9		ASTM E203	2016
F310 F996 G410	7,000	0,3		NBR 15888	2016
G845 J418 K125	6,993 6,150	0,2 -4,3	Insatisfatório	ASTM E203 ASTM E203	2023 2023
K433 K863 L126 M334 M530 M933 N138	7,260 6,600	1,7 -1,9		NBR 15888 ASTM E203	2022 -
N223 N341	7,000 7,041	0,3 0,5		NBR 15531 ASTM E203	2021 2016
N438 N936 O143 O443 P232 P449 P646 P746 P939	6,900 6,980 7,100	-0,3 0,2 0,8		ASTM E203 ASTM E203 NBR 15888	2023 2016 2022
Q461 Q557 Q647	7,100	0,8		ASTM E203	2023
Q944 R237 R567	7,090 6,200	0,8 -4,1	Insatisfatório	ASTM E203 NBR 15888	2016 2022
R945 S150 S464 S572 T170	6,900	-0,3		NBR 15888	2022
T241 T468 T660 T775 V374	6,949	0,0		ASTM E203	2023
W670 W901 W967 X185	7,100 7,000 7,091	0,8 0,3 0,8		NBR 15888 ASTM E203 ASTM E203	2022 2016 2023
X387 Y189 Y263 Y673 Y818 Y975 Z674	7,000	0,3		ASTM D6304	2020
Z909	6,700	-1,3		NBR 15531	2021

Nº de resultados Satisfatórios	22
Valor de Consenso (X_pt)	6,948
Desvio Padrão Robusto (sigma_pt)	0,1846
Mediana	6,997
Média Aritmética	6,902
Desvio Padrão Aritmético	0,2728
Repro do Grupo	0,543
Incerteza padrão: u(X_pt)	0,047
Incerteza/Desvio Padrão Robusto	0,255

Frequências	
ASTM E203	12
NBR 15888	8
NBR 15531	3
ASTM D6304	1

Resultados com três casas decimais, conforme ASTM E203.

9.14 Teor de Cloreto e Sulfato

Teor de Cloreto e Sulfato [mg/kg] NBR 10894, ASTM D7328, D7319

Laboratório	Cloreto	Sulfato	Método	Ano/Versão
C982	0,1	0,6	NBR 10894	2012
D300	0,664	0,905	NBR 10894	2012
N341	0,02	0,0	NBR 10894	2013
O143	<0,11	0,38	ASTM D7319	2022
R945	0,01	1,07	NBR 10894	2012
T241	0,0	1,4	NBR 10894	2012
W901	0,67	0,445	NBR 10894	2018
Z909	0,2	0,6	NBR 10894	2012

Optamos por não realizar a análise de desempenho neste ensaio, pelo seguinte motivo:

- suspeita de eventual contaminação dos frascos;
- pequeno número de resultados;
- resultados reportados em formato que impede a análise

9.15 Teor de Ferro e Cobre

Teor de Ferro [mg/kg] NBR 11331

Laboratório	Ferro
C982	0,02
D916	0,01
N341	0,10
O143	<0,1
R237	0,13
R945	0,19
T241	0,24
W901	0,021
Z909	0

Optamos por não realizar a análise de desempenho neste ensaio, pelo seguinte motivo:

- pequeno número de resultados;
- resultados reportados em formato que impede a análise estatística.

Teor de Cobre [mg/kg] NBR 11331

Laboratório	Cobre
C982	0,01
D916	0,01
N341	0,02
O143	<0,01
R237	0,01
R945	0,01
T241	0,0
W901	0,020
Z909	0

Optamos por não realizar a análise de desempenho neste ensaio, pelo seguinte motivo:

- pequeno número de resultados;
- resultados reportados em formato que impede a análise estatística.

9.16 Teor de Sódio

Teor de Sódio [mg/kg] NBR 10442

Laboratório	Sódio
C982	0,8
D916	0,85
F996	0,9
N341	0,1
O143	0,78
R237	1,0
R945	2,6
T241	0,8
W901	0,69
Z909	0,9

Optamos por não realizar a análise de desempenho neste ensaio, pelo seguinte motivo:

- suspeita de eventual contaminação dos frascos;
- pequeno número de resultados.

9.17 Teor de Resíduo por Evaporação

Teor de Resíduo por Evaporação [mg/100 ml] NBR 8644

	Resultado	Resultado
Laboratório	(resíduo não lavado)	(resíduo lavado)
B397	<1	<1
C982	35	1
G845		1mg/100mL Lavado
N341	0,4	0,2
N936		1,0
O143	18,7	18,7
P939		<1mg/100 mL lavado
R237	20	0,6
R945		1,0
T241	20	
Y189	18,5	0,0
Z909	21	0

Optamos por não realizar a análise de desempenho neste ensaio, pelo seguinte motivo:

- resultados reportados em formato que impede a análise estatística.
- indícios de que participantes não distinguiram entre resído lavado e não lavado.

Observação: o item de ensaio era o etanol hidratado combustível aditivado.

10 SUMÁRIO DAS ALTERAÇÕES

As seguintes alterações foram realizadas nesta versão final do relatório:

- 0 cronograma foi atualizado;
- No ensaio teor de água, a unidade do mensurando foi corrigida de % volume para % massa.

