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ABSTRACT
Over the years, many papers used parametric distributions to model
crop yields, such as: normal (N), Beta, Log-normal and the Skew-
normal (SN). Thesemodels arewell-defined,mathematically and also
computationally, but its do not incorporate bimodality. Therefore, it
is necessary to study distributions which are more flexible in mod-
eling, since most of crop yield data in Brazil presents evidence of
asymmetry or bimodality. Thus, the aim of this study was to model
and forecast soybean yields for municipalities in the State of Paran,
in the period from 1980 to 2014, using the Odd log normal logistic
(OLLN) distribution for the bimodal data and the Beta, SN and Skew-t
distributions for the symmetrical and asymmetrical series. The OLLN
modelwas the onewhichbest fit the data. The resultswere discussed
in the context of crop insurance pricing.
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1. Introduction

Agriculture is one of the oldest and most important activities to the human being, because
it is a source of rawmaterials, food and energy. However, agriculture presents great risks in
production on the basis of extreme weather events. Over the years, several tools for man-
aging risk were developed to minimize the impact of weather on agricultural production,
among them, the crop insurance [24]. In addition to minimize the risks of loss in agricul-
ture, the crop insurance provides the recovery of the financial capacity of the producer in
the event of damage caused by uncontrollable natural events.

However, crop insurance suffers from problems such as information asymmetry, thus
causing adverse selection,1 moral hazard,2 the lack of appropriate methodologies for
pricing and the absence of long historical series discourage the offer by the insurers
[10,21,42,48].

In this way, it is common to have the presence of the State developing actions that seek to
compensate for these deficiencies, such as premium subsidies. However, the absence of an
actuarialmethodology that accurate calculates the premium rate, and the lack of continuity
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2 G. V. DUARTE ET AL.

in the subsidy volume by the government, are pointed out as some of the main problems
for the crop insurance market development.

Therefore, this paper aims to propose alternative methods for crop insurance pricing
based on parametric distributions that capture the skewness or bimodality of the data.
Considering Brazilian yield data, to obtain the actuarially fair andmore accurate premium,
such characteristics must be taken into account. We compare the rates calculated by the
newmethodology with the commercial fees charged by Brazilian insurance companies and
discuss their implications for the market.

The rest of the paper is organized as follows. In Section 2 provides a background on
the modeling of yield. In Section 3 is presented an introduction to agricultural insur-
ance and the insurance premium calculation forms. The presents the description of the
data used in the research in the Section 4. The methodology used to model the agricul-
tural yield series is presented in the Section 5. In the Section 6 presents the results. In
the Section 7 presents the discussions. Finally, in Section 8, the concluding remarks are
addressed.

2. Background

In order to obtain the actuarially fair premium for crop insurance one needs to correctly
model crop yields. The literature presents three approaches to this issue: the first involves
the estimation of the parameters of a parametric distribution; the second is related to awide
variety of models using non-parametric distributions; and the third is composed by semi-
parametric methods, wich combines elements of the first and second alternatives [28].

According to Goodwin and Mahul [23] non-parametric methods, despite being more
flexible, require large samples, and also present difficulties in measuring rare or catas-
trophic events. Even so, they are the most used in studies with small samples. In the
non-parametric methods, Goodwin and Ker [22], Turvey and Zhao [51], Ker and Good-
win [29], Ozaki et al. [39] applied the kernel estimator for the density function of crop yield
and calculated the insurance premium rates.

Of particular note in the parametric methods, there are the studies of Just andWeninger
[27], and Botts and Boles [7] who used the N distribution to estimate yield.

In the study of Just and Weninger [27] they studied evidence of non-normality on data
of agricultural productivity in Kansas, in the United States. The authors identified three
methodological common problems in the analysis of crop yield distribution: specification
errors of non-random components in crop yield distribution, poor presentation and anal-
ysis of statistical significance and use of aggregated data to represent yield distributions at
the farm level.

Even for Just and Weninger [27], the presence of one or more of these problems affect
any evidence against normality. In addition, the use of the average yield of municipalities
(aggregate data), removes the specific information of farms and emphasizes the temporal
variability of producers from the region studied, supressing the farm variability.

Other studies such as Day [17], Taylor [49], Ramírez [44], Ramirez et al. [45] and Sher-
rick et al. [47] found evidence against normality, suggesting that the data is not symmetrical
when compared to the average.

In addition to the N distribution, other parametric distributions were used to model
crop yields such as: the gamma distribution in Gallagher [20], the inverse hyperbolic
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JOURNAL OF APPLIED STATISTICS 3

distribution in Moss and Shonkwiler [35], the Beta and Weibull distributions in Sherrick
et al. [47] and the skew-normal (SN) distribution in Ozaki and Silva [38].

Among thesemodels themost used is the Beta distribution. It is the study of Nelson and
Preckel [36]; Babcock and Hennessy [6]; Coble et al. [11]; Hennessy et al. [25] that found
strong evidence of skewness or kurtosis.

The study of Ramirez et al. [45] confirmed the evidences of non-normality and asym-
metry of agricultural productivity found in Ramírez [44]. The productivity of corn and
soybean was modeled in the ‘Corn Belt’ region and cotton in Texas, United States. The
authors also tested for nonlinear tendency, heteroscedasticity, kurtosis and skewness. An
expansion of Johnson SU distribution is used in modeling because of its flexibility. The
tests for nonlinear trend and heteroscedasticity are conducted at the same time allowing
the possibility of non-normal distributions using the additional information transmitted
through a correlation matrix. It is concluded that different patterns of non-normal distri-
butions could result in different factors that affect productivity at farm and municipalities
level, depending on the crop, cultivation system and geographic region. The main recom-
mendation of the study is that the researchers should recognize and consider in any risk
analysis, being that the political, market, industry or farm, the application of non-normal
distributions in modeling productivity.

In the study of Sherrick et al. [47], the productivity of corn and soybean was inves-
tigated on 26 farms in the United States, using the N, Logistic, Weibull, Beta and Log-
normal distributions. In this study they calculated and compared the payments to agri-
cultural crop insurance products for each of the parametric distributions within each
farm and between them, which showed that the choice of distribution has a significant
impact on the risk assessment of productivity and on the expected value of the insurance
payment.

Bayesian hierarchical models were also applied to the modeling of agricultural produc-
tivity as shown by Ozaki and Silva [38]. This study proposed an alternative formula to
calculate the insurance premium rate, on corn crops for the municipalities of the State of
Paraná, throughBayesian hierarchical space-temporalmodels using the SNdistribution. In
thismodel the time trendwas simultaneouslymodeledwith the spatial correlation between
the municipalities. Premium rates were calculated directly from the predicted distribu-
tion by Monte Carlo simulation through Markov Chain. The authors concluded that the
proposed methodology improves the actuarial and statistical procedures frequently used
in the calculation of premium rates, specially when working with a reduced number of
observations. The authors concluded that the empirical rates,3 commonly used by Brazil-
ian insurers, overestimate the risk of producers in areas of low risk and underestimate the
risk of ones with high risk.

Therefore, based on the studies we cited it is clear that short series of productivity
limit the use of nonparametric techniques, however these reduce the errors associated
with incorrect assumptions related to the distributions. The limitation of crop yield series
and the results of several studies suggest using parametric distributions in productivity
modeling.

In Brazil, there is no public database with information of agricultural productivity at
farm level, only at the municipal level. In addition, agricultural productivity in Brazil has
specific characteristics, such as asymmetry and bimodality. Therefore, for a more accurate
calculation of the insurance premium rate, it is important to consider distributions that
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4 G. V. DUARTE ET AL.

capture these characteristics, which has not yet been considered in existing literature, by
means of a parametric approach.

In the study of da Silva Braga et al. [16] they propose a new extendedNdistributionwith
heavier tails called the Odd log normal logistic (OLLN) model. The distribution is sym-
metric, platykurtic, leptokurtic andmay be unimodal or bimodal. In this paper is provided
three applications to real data to prove empirically the flexibility of the OLLN distribution:
the first application involves the temperature (◦C) and overall daily radiation (cm−2d−1)
variables correspond to daily data; the second data set refers to the experiment carried out
to assess the effects of doses of an anthelmintic compound (ml) to control a parasite (fixed
effects) using a CRD with five treatments and the data from the third application refer to
weight gain of livestock. The purpose of this application is to fit a linear RCBDmodel using
the OLLN distribution. In recent studies, Cruz et al. [13] obtained the Bivariate odd-log-
logistic-Weibull regression model for oral health-related quality of life; da Silva Braga et al.
[15] obtained the A new skew-bimodal distribution with applications and Alizadeh et al.
[5] obtained the the odd log-logistic logarithmic generated family of distributions with
applications in different areas.

3. Crop insurance

The agricultural insurance is an important risk transfer mechanism, however it also has
other benefits, among them, the economic stability of producers and the development and
adoption of new technologies. All of this has contributed to the decrease the rural exodus
and reduce the producer loan debt in case of losses [9].

In this type of contract, the producer shall be indemnified if the observed yield Y , after
the harvest, falls below the guaranteed yield Yg in the contract. The guaranteed yield is
defined asYg = λYe, where λ is the coverage level (CL) chosen by the producer, 0 < λ < 1,
Ye is the expected yield. In fact, the expected yield Ye is the arithmetic average of the past
five years.

The theoretical concepts related to the determination of the yield protection crop insur-
ance premium rates were described in the study of Lawas [30] and Miqueleto [34]. In
accordance with Ozaki [37], the premium is considered actuarially fair when the prob-
ability of the event of an accident is equal to the premium per unit of compensation, or
when the premium is equal to the expected indemnity payment’. Thus, the fair premium
rate is given by the expectation of loss, or expected loss, which is given by:

E(loss) = E(max{(yg − Y); 0}) = P(Y < yg)(λye − E(Y|Y < λye)). (1)

According to Goodwin and Ker [22], Goodwin and Mahul [23] and Ker and Goodwin
[29], the fair premium rate of a yield protection insurance contract is given by:

Premium rate = FY(λye)[λye − E(Y|Y < λye)]
λye

, (2)

where the FY(λye) is the cdf of the variable Y, named ‘probability of loss of the pro-
ducer’. In this context, we denote the importance of estimating the yield pdf correctly, since
inaccurate inferences could change the premium rate results.
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JOURNAL OF APPLIED STATISTICS 5

Figure 1. Soybean yield in Paraná in 2014.

4. Description of data

For themodeling of agricultural productivity, the annual soybean productivity data (kg/ha)
of some important municipalities in Paraná, Brazil, was obtained from the Economic
and Social Development Institute of Paraná [26]. The available observations are related
to the 1979/1980 through 2013/2014 agricultural years, making a total of 35 observa-
tions. Figure 1 shows the soybean agricultural productivity in Paran for 2014, according to
IPARDES.

The selected municipalities are Cascavel, Guarapuava, Castro and Palmeira. These
municipalities, besides being large producers of soybean, were also selected because they
are the State leaders in soybean planted area, in accordancewith the Bulletin ofAgricultural
Monitoring – Conab – summer-season crops 2015/2016 [18]. The commercial insurance
premium rates applied to the selected municipalities were provided by the Ministry of
Agriculture, Livestock and Supply [33].

5. Methodology

In this section we will present the parametric models used in the modeling of productivity
and the measures of adjustment for choosing the best model. The appendix presents the
method of estimation by maximum likelihood applied to models used in this study. All
analysis are conducted using package ‘Optim’ and ‘AdequacyModel’ of the R software [43].

The well-knownN and Betamodels were used as a first approach tomodeling yields. As
yields may present an asymmetric behavior the SN and ST models were also considered.

5.1. Odd log-logistic – F distributions

A recently introduced family of continuous distributions is the odd log-logistic-F (OLLF).
This class is well defined and some of its mathematics properties have been demonstrated,
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6 G. V. DUARTE ET AL.

such as ordinary and incomplete moments, quantiles functions, order statistics and two
types of entropies. The inference and estimation by the maximum likelihood method is
also covered for censored survivability data [14].

Let a cumulative probability function (cdf) of any baseline function F(x; ξ) with a
parameter vector ξ , the cdf of the OLLF, with a shape parameter α > 0, is defined by

G(x, ξ) =
∫ F(x,ξ)/F̄(x,ξ)

0

αtα−1

(1 + tα)2
dt = F(x, ξ)α

F(x, ξ)α + F̄(x, ξ)α
, (3)

where F̄(x, ξ) = 1 − F(x, ξ) and α = log(G(x; ξ)/Ḡ(x; ξ))/ log(F(x; ξ)/F̄(x; ξ)). The α
parameter represents the log quotient of the odds ratio for the baseline distribution F.Mul-
tiple distributions may be generated from the above equation as described in the study of
Alizadeh et al. [4], Cruz et al. [12] and da Silva Braga et al. [16].

The probability density function (pdf) of the new family is defined as:

g(x, ξ) = αf (x; ξ){F(x; ξ)[1 − F(x; ξ)]}α−1

{F(x; ξ)α + [1 − F(x; ξ)]α}2 . (4)

The new OLLF distribution family allows a greater flexibility of the distribution’s tails. If
we consider F(x; ξ)/F̄(x; ξ) = �(x;μ, σ)/�̄(x;μ, σ), in Equation (3), the cdf of theOLLN
model with an additional shape parameter α > 0 is defined by

F(x;μ, σ ,α) =
∫ �(x;μ,σ)/�̄(x;μ,σ)

0

α tα−1

(1 + tα)2
dt = �α(

x−μ
σ
)

�α(
x−μ
σ
)+ [1 −�(

x−μ
σ
)]α

, (5)

where �̄(x;μ, σ) = 1 −�(x;μ, σ). The OLLN density is given by

f (x;μ, σ ,α) = αφ(
x−μ
σ
)�(

x−μ
σ
)[1 −�(

x−μ
σ
)]α−1

σ {�α( x−μ
σ
)+ [1 −�(

x−μ
σ
)]α}2 , (6)

respectively. Note that α > 0 is a shape parameter. Henceforth, a random variable with
density function (6) as above is denoted by X ∼ OLLN(α,μ, σ). For μ = 0 and σ = 1,
we obtain the standard OLLN distribution. Further, the OLLN distribution with α = 1
reduces to the N distribution.

Note that the new model given by Equation (6) has only one extra parameter and two
parameters of theN distribution. This compares favorably with other families, for example,
theGeneralized Beta family (B-G) proposed by Eugene et al. [19], which includes two extra
shape parameters and its cdf depends on the incomplete beta function; the Kummer Beta
generalized family (KB-G) [41], that involves three extra parameters and its cdf depends on
the confluent hypergeometric function; the generalizedMcDonald class (Mc-G) [3], which
includes three extra parameters and its cdf also depends on the incomplete beta function.

Figure 2 shows the density of the OLLN distribution for some values of the parameters
μ, σ and α. It should be noted in the plots Figure 2(a, b) the contribution of the parameter
α on the unimodality and bimodality of the distribution, when μ and σ are fixed. When
the parameter α approaches zero, the pdf presents bimodality. On the other hand, when the
value of α increases the function presents unimodality. It is observed that when μ varies,
the plots is translated in the x-axis, regardless of the form Figure 2(c).
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JOURNAL OF APPLIED STATISTICS 7

Figure 2. Plots of the OLLN density function for different values of the parameters. (a) Varying α > 0,
(b) varying α < 0, and (c) varyingμ > 0 e 0.2 < α < 0.5.

5.2. Model assessment

For the selection of the model that best fits the data, it is used some criteria or statistical
tests. The most used criteria for model selection in practice are the Akaike’s information
criterion (Akaike AIC), proposed by Akaike [1] and the Bayes information criterion (BIC),
Schwarz [46]. These criteria are based on the logarithm of the estimated likelihood func-
tion. The Akaike’s criterion penalizes models with large number of parameters k, since it is
expected that the logarithm of likelihood function grows with the number of parameters
added to the model.

Several corrections of this criterion have been proposed, in order to reduce the probabil-
ity of choice of models with greater order than desired. Among them, there is the corrected
AICc, proposed by Akaike [2].

A different approach for choosing the best model is through the study of modified
statistics, from Anderson–Darling (W∗) and Cramer–von Mises (A∗), proposed by Lin
et al. [31] and Pakyari and Balakrishnan [40], respectively.

These statistics were calculated as follows: given the maximum likelihood estimator
(MLE) θ̂ , for a n-dimensional vector θ from the observed Type-II right censored sam-
ple x1 < · · · < xn. Then, calculate vi = F(xi; θ), and convert the censored sample vi to a
complete sample of size r, v∗

1 , . . . , v
∗
r . Then, compute yi = �(vi)

−1, �(·)−1 is the inverse
cdf of the standard N distribution.

The model that presents the lowest value of these statistics should be chosen.

W2 =
n∑

i=1

(
μi − (2i − 1)

2n

)2
+ 1

12n
, W∗ = W2(1 + 0.5/n), (7)

A2 = −n − 1
n

n∑
i=1
((2i − 1) logμi + (2n + 1 − 2i) log(1 − μi)), (8)

A∗ = A2(1 + 0.75/n + 2.25/n2), (9)

where μi = �((yi − ȳ)/sy), ȳ = ∑n
i=1 yi/n, s

2
y = ∑n

i=1(yi − ȳ)2/(n − 1).
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8 G. V. DUARTE ET AL.

5.3. Crop yield trend

In the period of study (1980–2014), there was a great advance in the technologies employed
in crops, such as planting techniques, inputs, machinery, among others, which suggests a
trend in the data. Moreover, it can be expected time dependence and not constant variance
over time. Thus, before adjusting any probabilistic model for the series of productivity, it
is necessary to use statistical techniques that result in a series with no trend, independent
and homoscedastic.

The range correction related to the trend is achieved by the same approach used in
[20,23,50]. This procedure initially estimates a linear deterministic model of productivity
and time, given by:

yt = α + βT + et , et ∼ N(μ, σ), (10)

where yt is the productivity vector, T is the time vector, α and β the parameters of regres-
sion. It proceeds to take up the residuals êt of the regression, the estimate of the last
observation through the fitted model ŷ2014 and removes the tendency according to the
equation:

ỹt = ŷ2014
(
1 + êt

ŷt

)
. (11)

For the verification of temporal dependence is applied the test proposed by Ljung and
Box [32], in which the null hypothesis is that there is independence in the series. In addi-
tion, to verify homocedasticy, it was applied the Breusch and Pagan [8] test, in which the
null hypothesis is that the series is homoscedastic.

6. Results

Regarding the temporal dependence test for the municipalities of Cascavel (p-value
= 0.7416), Guarapuava (p-value = 0.1013), Castro (p-value = 0.1004) and Palmeira
(p-value = 0.2597) we conclude that there is no temporal dependence in the series.

Observing the p-values of the homocedasticy test for the municipalities of Cascavel
(p-value = 0.624), Guarapuava (p-value = 0.1785), Castro (p-value = 0.2412) and
Palmeira (p-value = 0.0437) we conclude the series are homoscedastic.

Table 1 presents some descriptive statistics for the selected series, corrected for ten-
dency, temporal dependence and heteroscedasticity. Note that for all municipalities the
coefficient of skewness is negative and the median is greater than the average, with the
exception of Palmeira, suggesting a negative skewness. In addition, the municipality of
Castro presents a leptokurtic curve. The municipalities of Guarapuava and Castro have
a lower coefficient of variation when comparing with other municipalities, suggesting a
lower production risk for these municipalities. For all municipalities the expected yield is
more than 3300.00 kg/ha.

The parameter estimates for the parametric distributions were obtained by maximum
likelihood. Details are presented in the appendix. Figure 3 shows the original and corrected
productivity series (without trend). We note that the series without trend shows similar
behavior to the original series.
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Table 1. Descriptive statistics for the corrected series.

Municipalities

Cascavel Guarapuava Castro Palmeira

Average 3268.108 3380.111 3526.370 3244.340
Median 3310.269 3411.745 3547.058 3210.203
Standard deviation 438.727 282.186 231.310 328.003
Asymmetry −0.075 −0.262 −0.920 −0.369
Kurtosis 2.908 2.440 5.431 2.219
Maximum 4277.174 3925.333 4014.058 3701.117
Minimum 2280.380 2703.796 2742.989 2473.699
Expected productivity 3403.802 3589.257 3589.257 3337.692
Coefficient of variation 0.134 0.083 0.066 0.101

Table 2. Statistics and information criteria for model selection.

Municá-pios Modelo A∗ W∗ AICc BIC

N 0.2190 0.0354 528.5575 531.2932
SN 0.2190 0.0354 530.9567 534.8486

Cascavel OLLN 0.2107 0.033 530.932 534.8240
Beta 0.2220 0.0360 533.462 538.3502
ST 0.8448 0.1066 534.2515 538.4039

N 0.303 0.050 497.665 500.4015
SN 0.2459 0.037 499.414 503.3063

Guarapuava OLLN 0.1899 0.0254 498.2860 502.1779
Beta 0.1950 0.026 500.8035 505.6915
ST 0.8183 0.0893 503.3585 507.5109

N 0.628 0.0999 483.7492 486.4849
SN 0.4334 0.0646 483.5584 487.4503

Castro OLLN 0.338 0.0557 482.6576 486.5494
ST 0.8002 0.0948 484.1971 488.3496

N 0.5713 0.0873 508.1976 510.9333
SN 0.5713 0.0873 510.5968 514.4887

Palmeira OLLN 0.3481 0.0397 506.3232 510.2150
ST 0.9497 0.1078 513.8916 518.0440

Figure 4 shows the densities adjusted by the parametricmodels. ForCastro andPalmeira
municipalities there was no convergence for the Beta model, thus its not present in the fig-
ures. Also, the SN and ST models overlap the N model for Palmeira. Note that in series
with bimodality, as Guarapuava and Palmeira, the OLLN distribution captures this char-
acteristic. Therefore, a major breakthrough for parametric distributions studied in yield
modeling applied to crop insurance.

In Table 2 are presented the AIC and BIC information criteria and the statistics A∗ and
W∗. It is observed that for all municipalities, the model that best fits the data is the OLLN
model. Therefore, the rates adjusted by the OLLN model are more accurate than the rates
adjusted by the other distributions.

After choosing the distribution that best fits the data, the next step is to calculate the
premium rates for each municipality, according to Equation (2), and compare the results
with those estimated by the N distribution, commonly used by the insurance market.

7. Discussions

Table 34 shows the actuarially fair rates (pure fees) of the calculated premium, using dif-
ferent distributions for the city of Cascavel. It is observed that for coverage levels ranging
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10 G. V. DUARTE ET AL.

Figure 3. Original and corrected productivity series.

from 55% to 70%, the OLLN distribution overestimates the premium rate, compared to the
N distribution, which is widely used by the insurance market. Equivalently, the N model
underestimate the insurance rate. The implication for the insurer is reduce the total volume
of premium.

However, for the coverage levels ranging from 75% and 80%, the OLLN distribution
underestimates the premium rate compared to the N distribution. That is, the premium
rate calculated considering the N distribution overestimates the OLLN-rate.The overpric-
ing may hamper the massification of the insurance, and attract producers with higher risk
profile, increasing the problem of adverse selection.

This analysis was also conducted for other municipalities, but we chose not to present
the results as the primary objective is to compare the OLLN model comercial rates with
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Figure 4. Adjusted distribution for the corrected series.

Table 3. Pure rate (in %) – Cascavel.

LC N SN OLLN Beta ST

55% 0.007 0.007 0.008 0.003 0.006
60% 0.041 0.042 0.047 0.030 0.041
65% 0.178 0.181 0.189 0.154 0.176
70% 0.602 0.611 0.610 0.561 0.599
75% 1.686 1.705 1.653 1.610 1.678
80% 3.991 4.029 3.858 3.822 3.976

the other models comercial rates. Commercial rates for all municipalities are shown in
Table 4.

The pure rate (PR) represents the intrinsic business risk, without including any addi-
tional costs. To compare it with the rates offered by insurance companies, we need to
include average parameters of the market, regarding technical margin, administrative and
business expenses and the insurer’s profit margin.
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Table 4. Commercial rate (in %) with a safety margin of 20% for the municipalities of Cascavel, Guara-
puava, Castro and Palmeira.

Cascavel LC N SN OLLN Beta ST A B C

55% 0.014 0.014 0.016 0.006 0.012 7.320 6.290 7.330
60% 0.082 0.084 0.094 0.060 0.082 6.660
65% 0.356 0.362 0.378 0.308 0.352 10.530
70% 1.204 1.222 1.220 1.122 1.198
75% 3.372 3.410 3.306 3.220 3.356
79% 6.802 6.870 6.586 6.518 6.776
80% 7.982 8.058 7.716 7.644 7.952

Guarapuava LC N SN OLLN Beta ST B
65% 0.002 0.012 0.000 0.000 0.000 6.700
70% 0.020 0.080 0.000 0.000 0.010 6.480
75% 0.188 0.386 0.016 0.030 0.104
80% 1.200 1.458 0.354 0.784 0.738
85% 5.340 4.496 3.502 4.282 3.532
87% 8.808 6.704 6.962 7.004 5.964

Castro LC N SN OLLN ST B D
55% 0.000 0.000 0.000 0.000 6.400
60% 0.000 0.000 0.000 0.026 6.440
65% 0.000 0.000 0.002 0.076 5.240
70% 0.000 0.008 0.012 0.178 6.580
85% 1.474 2.668 1.492 2.228
87% 3.158 4.744 2.764 3.314

Palmeira LC N SN OLLN ST B
70% 0.100 0.102 0.008 0.096 6.620
80% 2.268 2.316 1.668 2.218
83% 4.628 4.718 4.938 4.544
85% 7.074 7.200 8.854 6.958
87% 10.394 10.568 14.196 10.238
90% 17.242 17.504 23.774 17.018

According to [9], some Brazilian insurers add a safety margin of 10–25% to pure rates,
after the inclusion of administrative expenses, trade and profit margin, which correspond
to an average of 10%, and 20%, respectively. Thus, in this study, we chose to use a loading
factor of 40%, which means to divide the pure rate with the safety margin by 0.6. The
market parameters adopted are 20% for the safety margin, 10% for business expenses, 20%
for administrative expenses and 10% for profit margin.

The commercial rates (CR) with a 20% safety margin were obtained as follows:

CR = TP ∗ 1.2
[1 − (0.1 + 0.2 + 0.1)]

= TP ∗ 1.2
0.6

. (12)

The pricing procedure used by each insurer is not publicly available, however, it is
known that most insurers use the N distribution for crop yield modeling. Insurers also
add a safety margin based on loss ratio historical data for the municipalities.

Table 4 presents the commercial rates with a safety margin of 20% for each model and
the commercial rates charged by insurance companies A, B, C and D for the municipalities
of Cascavel, Guarapuava, Castro and Palmeira.

When comparing the rates calculated in this study with those applied by insurers, it is
noted that these are much below those practiced by the market. As an example, the com-
mercial rate calculated by the OLLN distribution (Table 4) to Cascavel, with a coverage
level (CL) of 55%, corresponds to 0.25% and 0.22% of the insurers B and C commercial
rates, respectively.With a coverage level of 65%, the commercial fee calculated by theOLLN
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distribution corresponds to 3.58% of the insurer C commercial rate. Note in Table 4 that
the rate of 6.66% offered by the insurer B, with a coverage level of 60%, represents approx-
imately the commercial rate calculated by the model OLLN, with a 79% coverage level.
Hence, insurers offer an inferior product with a high premium rate, making it difficult to
massify insurance in Brazil.

For Guarapuava, the rates calculated by the N distribution are overpriced when com-
pared to other distributions. Also, it is noted that the 6.70% rate offered by the insurance
company B with 65% of coverage level represents, approximately, the commercial rate cal-
culated by OLLN model with 87% coverage level. In Castro there is also one overpriced
rate estimated by the N distribution, when compared to the OLLN distribution, for the
87% coverage level.

On the other hand, the municipality of Palmeira offers greater variability and, conse-
quently, higher risks and rates. For coverage levels from 70% to 80% the N distribution
overestimates the premium rate when compared to the OLLN distribution. However, to
83% or more coverage levels there is an underestimation of the rate. Moreover, the rate
calculated by the OLLN distribution on the 70% coverage level equals to 0.12% of the rate
used by the insurer B. This is evidence that Brazilian insurers use high rates on the yield
protection product, when compared with the rates calculated in this study.

This detachment of the rates can be explained by the fact that the insurance is not mass
marketed in Brazil, besides it is concentrated mainly in the southern region of the country,
a region of higher occurrence of atypical climatic events. Thus resulting in a concentration
of risk to the insurer who, consequently, needs to make an additional loading fee at the rate
of pure risk, besides the natural loading fee, if insurance were massified in Brazil.

The differences in the premium rates can also be explained by the fact that it is assumed
that all producers of this municipality bought insurance, that is , it is assumed that the
insurance ismassively sold in the city, causing a lower rate. In this studywe used the average
of municipal yields, reducing the individual variability as shown in the study of Just and
Weninger [27].

8. Concluding remarks

In this study alternative probability distributions were evaluated for modeling soybean
yields and estimate yield protection insurance premium rates. The series were adjusted
considering the N, Beta, SN, OLLN and ST distributions for municipalities in the State of
Paraná, Brazil.

We concluded that, for all series, the best fitted model was the OLLN model. Fur-
thermore, the bimodality found in the municipalities of Guarapuava and Palmeira was
considered in the calculation of the premium rate.

For the city of Cascavel the premium rate estimated by the N model is underestimated
when compared to the OLLN model, with coverage levels ranging from 55% to 80%.
However, for coverage levels from 83% to 90%, the N model overestimates the rate when
compared to the OLLN model.

For the city of Guarapuava there is an overestimation of the rates calculated by the N
model when compared to the OLLN model. As for the municipality of Palmeira, the pre-
mium rate is overpriced for the coverage levels from 79% to 80% and underestimated for
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14 G. V. DUARTE ET AL.

levels of coverage higher than 83%. Finally, the premium rate calculated by the N model
for the municipality of Castro is overestimated for coverage levels of 87% or more.

The underestimation of the rate may lead to serious damage to the insurer, because it
offers a product that takes into account a smaller risk of yield than the one that should be
taken.Moreover, overestimation of the premiumrate hampers themassive sale of insurance
in Brazil, as well as attract farmers with higher risks, strengthening the problem of adverse
selection.

A large part of the distancing of the rate estimated in this study with those applied by
insurers may be explained by the fact that insurance is not spread troughtout Brazil and
by the delay of government subsidy payments to the insurers, which can encourage these
to increase the rates thus making a provision of this cost. There also may be an excessive
profit by the insurers.

Historically, in the Brazilian market, the crop insurance has been avoided by producers
because they have high premium rates and insurers have avoided offering products of agri-
cultural insurance, considering the high probability of receiving claims. Therefore, more
precise statistical methods should be taken into consideration by insurers to better reflect
the risk and improve the calculation of premium rates. For future research, we intend to
study with regression models considering climatic variables to model the yields.

Notes

1. According to Quiggin et al. [42], ‘Adverse selection means that people who are more likely to
present claims will be more willing to insure at a given rate’.

2. Moral hazard refers to the fact that the insured may take certain actions which the insurer is
unable tomonitor, leading to an increase in production risk. For example, after buying insurance
the producer may use less fertilizers or pesticides, causing the yield to decline [42].

3. According to Ozaki and Silva [38] these rates are based on the relationship between the average
loss of the insured and this method does not take into account robust statistical analysis.

4. We present several coverage levels in order to compare with the equivalent coverage level in our
model
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Appendix . Maximum likelihood estimation

To estimate the parameters of the distributions presented in Section 4, we used the method of max-
imum likelihood. This appendix describes the statistical inference used in this article for the skew-t
Student models, being that procedure the same for the remaining distributions. Consider y1, . . . , yn,
a random sample of size n of the distribution ST. Then, the logarithm of the likelihood function for
the vector of parameters θ = (μ, σ , ν, τ)T, is given by:

l(θ) =
n∑
i=1

log

{
2

τ + 1
τ

�( ν+1
2 )

�( ν2 )σ (πν)
1/2 ×

[(
1 + z2

ν

)
1
τ 2

]−(ν+1)/2}
, (A1)

where, z = (y − μ)/σ .
The MLEs θ̂ of the vector of parameters can be obtained by maximizing the log-likelihood ratio

test (Equation (A1)). In this step, we used the ‘Nelder-Mead’ and ‘L-BFGS B’ methods, provided in
the package ‘Optim’ of the R software, [43], in which the initial values to estimate the parameters
can be obtained, first, estimating the parameters for the standard t-Student model and with these
values it is estimated the parameters of the ST model.

In addition, the ‘Optim’ package provides the option ‘gr’ in which the user can provide the score
vector, what makes the algorithm more efficient. In this case, the components of the U(θ) score
vector are given by:

Uν(θ) =
n∑

i=1

{
ψ(ν+1

2 )
√
πντ 2 + �(ν2 )[ψ(

ν+1
2 )πν − ψ(ν2 )πν − π]

2
√
πν

}

+
n∑
i=1

{
−1
2
ln

[
νσ 2 + (yi − μ)2

νσ 2τ 2

]
+ (ν + 1)+ (yi − μ)2

2ν[νσ 2 + (yi − μ)2]

}
,

Uμ(θ) =
n∑

i=1

{
( ν+1

2 )(−2yi + 2μ)
νσ 2 + (yi − μ)2

}
,

Uτ (θ) =
n∑

i=1

{
−τ 2 + �(ν2 )

√
πν − (ν + 1)[τ 2 + �(ν2 )

√
πν]

τ(τ 2 + �(ν2 )
√
πν)

}
,

Uσ (θ) =
n∑

i=1

{
1
σ

− (ν + 1)(yi − μ)2

σ [νσ 2 + (yi − μ)2]

}
.

Making these equations equal to zero and solving them, simultaneously, we obtain the MLEs of
the parameters, using numerical methods.

Under certain regularity conditions the parameter vector θ , in its parameter space, has the√
n(θ̂ − θ) asymptotic distribution, N multivariate N4(0,K(θ)−1), where K(θ) is the matrix of

expected information.
The K(θ)−1 matrix of asymptotic covariances of θ̂ can be approximated by the (4)× (4) inverse

of the observed information matrix −L̈(θ), so you can obtain an approximation of the covariance
matrix through the inverse of the observed information matrix of the parameter function. So, the
MLEs can provide trust regions using the asymptotic normality.
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Then, the asymptotic inferences for the vector of parameters θ can be performed using the N
approximation N4(0,−L̈(θ)−1) for θ̂ and the standard errors for the MLEs can be obtained from
the square root of the elements in the main diagonal of the observed information’s inverse matrix,
and one may formulate hypotheses to be tested. The elements of the observed information matrix
are given by:

L̈(θ) =

⎛
⎜⎝
Jμμ Jμσ Jμν Jμτ
· Jσσ Jσν Jστ
· · Jνν Jντ
· · · Jττ

⎞
⎟⎠ ,

for i = 1, . . . , I, which are obtained numerically. The N asymptotic distributionN4(0,−L̈(θ)−1) can
be used to build approximate regions of trust for the vector of parameters θ .

The asymptotic normality is also useful for testing the quality of adjustment of some submodels.
The likelihood ratio statistics can be used to compare the ST distributions (μ, σ , λ,α) with the N,
Student and Cauchy submodels.

So, we get the value of the w statistic of the log-likelihood function of the restricted model under
the unrestricted model yet to be tested. In some cases, the hypothesis of type H0 : ψ = ψ0 versus
H : ψ �= ψ0 is tested, whereψ is the vector formed with some components of θ and ψ0 is a specific
vector. For example, the hypothesis H0 : τ = 1 versus H : H0 is not true is equivalent to compare
ST(μ, σ , τ , ν) to the Student’s t distribution, and the statisticW is obtained by:

w = 2{�(μ̂, σ̂ , τ̂ , ν̂)− �(μ̃, σ̃ , 1, ν̃)},
in which α̂, μ̂ and σ̂ are the MLEs under H and μ̃ and σ̃ are the estimates under H0.
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