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Over the years, crop insurance program became the focus of agricultural policy in U.S., Spain,
Mexico, and more recently in Brazil. Given the increasing interest in insurance, accurate
calculation of the premium rate is of great importance. We address the crop-yield distribution
issue and its implications to pricing an insurance contract considering the dynamic structure
of the data and incorporating the spatial correlation in the Hierarchical Bayesian framework.
Results show that empirical (insurers) rates are higher in low risk areas and lower in high risk
areas. Such methodological improvement is primarily important in situations of limited data.
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1. Introduction

In agricultural economics, crop-yield distributions have been an extensively ex-
plored issue. Over the years, the statistical aspects behind this variable have been
a controversial point. In order to better reflect the innovation of the crop-yield,
three main approaches have been proposed by economists: parametric, semipara-
metric [17] and nonparametric [12, 18, 22].

Considering the parametric approach, [16] suggested normality of yield distribu-
tions. However, other economists like [3], [27], [23], [24] and [1] found evidences
against normality. Alternatively, some other parametric methods, with specific
functional form and distributional assumptions, are considered in the literature:
Beta distribution [4, 6, 7, 13, 20], inverse hyperbolic sine transformations, known
as the SU family [19], and gamma distributions [9].

The issue of yield normality or non-normality is of paramount importance in
the economic risk analysis and risk management tools. For example, the model
selection problem could seriously affect the crop insurance results, and the as-
sumption of non-normality would invalidate the approximations in the expected
utility framework, such as those found in the mean-variance analysis.

In this paper we address the issue of crop-yield normality assuming an alternative
distributional specification proposed by [2], known as the Skew-normal distribution.
After estimating the conditional yield density as an intermediate step, our economic
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and final objective is pricing an insurance contract based on regional crop-yield
(area-yield insurance).

The choice of a statistical model that better reflects the conditional density of
yields is an important aspect in the actuarial calculation of the premium rate.
When recovering the generating process of the data, we must often address issues
related to the fact that crop-yield presents substantial trend over time and are
significantly correlated over space due to the systemic nature of weather and soil
conditions.

The crop-yield follows a spatio-temporal process, in the sense that if we take
the average in a region conditional to the temporal process, one can recover the
conditional density yield f(y|Ωt) at certain moment in time and region, where Ωt

is the minimum σ-algebra generated by the information known at moment t [18].
In several empirical works, the only information known at time t is the time

itself. Thus, in previous works the conditional density is based only on the temporal
generating process of the data [21]. Our work incorporates to the dynamic structure
of the generating process, the spatial effect, according to the concept of adjacent
regions through the hierarchical structure of the model resulting in spatio-temporal
models. Yet, we assume that the likelihood follows a Skew-normal distribution. All
model parameters are estimated through a simulation-based method known as the
Markov Chain Monte Carlo (MCMC) algorithm.

[26]considered a different approach based on the Bayes rule to estimate the
moments of individual farm-level crop yield distributions. The yield densities are
estimated using information theory and maximum entropy. The active learning
rule developed reduced the bias and uncertainty of the premium rates. Unlike the
approach of [26], our approach takes into account all modeling variability at once
and the premium rate is directly estimated through MCMC. Another point of
our likelihood distributional assumption is the possibility to estimate the skewness
parameter which in the actuarial context is critical because we are interested in the
left tail of the distribution. Our approach makes the premium rate calculation less
ad hoc, in the sense that rates are derived from a predictive distribution obtained
by the Bayesian approach. Moreover, when calculating the rate we are able to
capture its model-based uncertainty through a standard error which is estimated
within the model.

The paper is organized as follows: in Section 2 we briefly review the Skew-normal
distribution and present a general hierarchical model that accounts for temporal,
spatio and spatio-temporal autocorrelation of the data generating process. In Sec-
tion 3 we discuss the problem of rating the crop insurance contract based on the
optimal model specification. In Section 4 we describe the Brazilian yield data for
corn, in Section 5 we present our empirical findings and discuss their implications,
and in Section 6 we conclude the paper.

2. Statistical modelling

2.1. Skew-normal distribution

[2] proposed a method for constructing skewed distribution based on any symmet-
rical ones. Let f be a probability density function (p.d.f.) symmetric about 0, and
G an absolute continuous cumulative distribution function (c.d.f.) such that g = G′
is symmetric about 0. Then

2f(x)G(θx), x ∈ R, (1)
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is a p.d.f. for any θ ∈ R. From equation (1), the Skew-normal (SN) distribution,
with location parameter µ, scale parameter σ and shape parameter θ, is defined by
the following p.d.f.:

φ(x|θ, µ, σ) =
2
σ

φ

(
x− µ

σ

)
Φ

(
θ(x− µ)

σ

)
, (2)

where φ and Φ are the p.d.f. and the c.d.f. of a standard normal random variable,
respectively. We can measure the degree of skewness of the Skew-normal distribu-
tion given in equation (2) by

γ = δ3

[
4
π
− 1

] [
1− 2δ2

π

]−3/2 √
2
π

(3)

where δ = θ(1 + θ2)−1/2 and −0, 99527 < γ < 0, 99527 with limiting cases
(θ → ±∞) being half-normal distributions. In fact, we use the approach of [14],
representing the Skew-normal distribution as a mean-variance mixture of a normal
and a half-normal distributions1.

2.2. Bayesian hierarchical model

Let yij be the agricultural yield in county i in year t, where i = 1, . . . , S and
t = 1, . . . , T . Conditional on a stochastic location, a scale and a shape param-
eters, we assume that the observed data follow a SN distribution, such that
yit ∼ SN(µit, σ, θi). The objective is to model the stochastic location component
capturing possible skewness on the distribution of each county i, so that µit reflects
the temporal effects, spatial variation and spatio-temporal relationships relevant
to agricultural yield. Our general hierarchical structure is given by

yit ∼ SN(µit, σ, θi) (4)

µit =
m∑

`=0

βi`t
` +

p∑

k=1

φikyi,t−k (5)

For each county i, βi = (βi1, . . . , βim)′ consists of regression coefficients for the
deterministic temporal trend, and φi = (φi1, . . . , φip)′ consists of autoregressive co-
efficients for the stochastic temporal trend. For the deterministic trend model, we
center the variable t in order to improve the speed of convergence of our MCMC
algorithm. Moreover, the spatial correlation can also be modelled in equation (5)
considering a conditionally autoregressive (CAR) prior distribution for the param-
eters of the deterministic trend [5, 8] in the following way:

βi` = ξi` + ω`, ξ` = (ξ`1, . . . , ξ`S)′ ∼ CAR(σ2
ξ`

) and ω` ∼ N(α`, τ
2
` ). (6)

Intuitively, we can think of the parameters as being correlated across space given
time. Note that for ` = 0 the spatial correlation is directly related to the location
µit. To complete our model specification we need to define the prior distribution
of the parameters. We assume that all parameters are independent a priori and
we assign known proper distributions with specific hyperparameters to be given in
detail in Section 5.

1[11] shows more details on multivariate Skew-normal distribution and other skewed distributions.
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For selecting the best-fit model, we adopt a criteria based on the predictive
density,

f(ynew|yobs) =
∫

f(ynew|ΘM ,M)p(ΘM |yobs,M)dΘM ,

where ΘM represents the set of all parameters in model M , formalized by [10] and
known as the expected predictive deviance (EPD). The objective is to minimize the
posterior predictive loss function. The penalty is already considered in the criteria
regardless the model dimension.

3. Rating the crop insurance contract

The premium rate is a critical parameter of any insurance contract. An inaccurate
premium rate results in distortions to the insurance pool and thus may result in
losses as individuals adversely select against the insurance provider. In particular,
low risk agents may be overcharged and high risk agents may be undercharged.
This will distort participation in favor of the higher risks and thus premiums will
not be sufficient to cover indemnity payments.

In the literature of insurance economics, this is often also referred to as the
“hidden information problem” since agents tend to know more about their risks
than does the insurance provider. This condition of adverse selection has been well
documented for a number of insurance plans. The eventual failure of an insurance
program as a result of such selection is often called the “death spiral of adverse
selection.”

Optimally, an insurance provider would prefer to calculate individual premium
rates for each farmer on the basis of that farmer’s risks and expected yields. How-
ever, individual yield data are usually rare and thus crop insurance plans are often
based upon more aggregate data - such as data at the county level. Such index-
based crop insurance plans were developed to overcome the problem of short or
nonexistent individual crop yield series.

In Brazil the lack of crop-yield series at farm-level and the short number of obser-
vations at county-level challenge the insurance companies to price their insurance
contracts. Traditionally, the methods commonly used to pricing crop insurance
contracts are based on the relation of the average loss over liability, known as “em-
pirical rates” (ER), and do not take into account any more advanced statistical
analysis1. One of the main disadvantages of the ER method is its dependence on a
large number of observations to accurately reflect the yield distribution. In order
to overcome this problem we assume a flexible parametric probability distribution
and incorporate the spatial and time correlation in the analysis (see Section 2).

Accurate pricing of crop insurance policies requires accurate estimation of the
conditional yield densities. The insurance premium rate, from now on Bayesian
Rates (BR), represents expected payouts as a proportion (or percentage) of total
liability. In the simple case where a proportion λ (0 6 λ 6 1), known as the level
of coverage, of the expected crop yield ye is used to form the basis of insurance,
the premium rate is given by:

BR =
FY (λye)EY [λye − (Y |y < λye)]

λye
=

∫ λye

0 (λye − y)PGf(y)dy

λyePG
(7)

1Information obtained during personal interview with several private insurance companies operating in
Brazil.
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where E is the expectation operator, PG is the price at which losses will be paid
at, f is the probability density for yields, and F is the cumulative distribution
function of yields. In order to derive the premium rate directly from our Bayesian
hierarchical model a slightly different derivation of the premium rate is convenient
for our purposes. If we reparameterize y, such that, y∗ = y/(λye), then (7) becomes:

BR = P (y∗ < 1)Ey∗ [1− (y∗|y∗ < 1)]. (8)

Note that the support of the random variable y remains the same in this transfor-
mation. If we consider w = 1− y∗, then (8) can be rewritten such that:

BR = P (w > 0)Ew[w|w > 0]. (9)

After some simplification, the premium rate equation reduces to:

BR =
∫ 1

0
wf(w)dw. (10)

We can similarly write (10) as BR = E[wI(0 < w < 1)]. Because of the change of
variable, the support also changed such that w now lies between 0 and 1. In our
model, we can easily computationally implement (9) using the predicted yields.
This expression represents the posterior mean of w, which is the BR calculated
for each county and for each level of coverage presented. Moreover, through the
Bayesian approach we can derive standard error estimates of the premium rates.

4. Data description

The corn crop-yield data (kilograms per hectare) are provided by the IBGE (Sta-
tistical and Geography Brazilian Institute), in the state of Paraná (Brazil), in the
period of 1990 trough 2002. The state of Paraná is located in the South Region
and is the largest producer of corn in the country, with 9 797 816 tons produced
in 2002, approximately 27% of all Brazilian production.

There are 399 counties, where only 290 counties have 13 years of observations
(complete series). Consequently, we included only those counties with the largest
number of observations. The five largest counties in terms of average yield are
Castro (6 142 kg/ha), Ponta Grossa (5 629 kg/ha), Marilândia do Sul (5 488
kg/ha), Tibagi (5 346 kg/ha) and Catanduvas (4 923 kg/ha).

5. Empirical application

As an initial data exploration technique, we use empirical plots and fit some re-
gression models with autoregressive error structure to each county. Hence, we set
the maximum value for m equal two and for p equal one. Moreover, we assume
that the spatial structure are the same for each regression coefficient ` such that
ξi` conditional on ξj`, (i 6= j), is proportional to:

ξi`|ξj` ∼ exp



−

1
2σ2

ξ`


ϕi`ξi` −

∑

i6=j

ηi`jξj




2
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where ϕi` > 0 is a “sample size” associated with region i and ηi`j is the weight
reflecting the influence of ξj` on the conditional mean of ξj . We let ηi`j = 1 if j is
a neighbor of i and 0 otherwise, and set ϕi` equal to the number of neighbors of i.

We fitted the model given by equations (4), (5) and (6) and its particular cases
with m ∈ {1, 2} and p ∈ {0, 1}, and chose the best-fit model based on the EPD. For
each model, we ran three chains to check the mixing of the Markov sequence and
to properly analyze the convergence. We fitted, in total, 15 models - including a
very simple model with only the deterministic trend and more sophisticated models
with m = 2 and p = 1 in equation 5. From among all the alternatives, the three
best-fit competing models, related to the skewness of the distribution of yit and
based on EPD, are the following:

• Model 1: θi = 0 for i = 1, . . . , S such that yit ∼ N(µit, σ
2);

• Model 2: θi ∼ N(aθ, bθ); and
• Model 3: θi|µθ, σθ ∼ N(µθ, σ

2
θ), µθ ∼ N(aθ, bθ) and σ2

θ ∼ IG(cθ, dθ).

Table 1 compares the best-fit model based on EPD for the three models above.
The best-fit is Model 3, which with specified prior and hyperparameters is given
by

yit ∼ SN(µit, σ, θi), µit = β0i + β1i(t− 7) + φiyi,t−1,

β0i ∼ N(300, 106), β1i = ξi + ω, ξ ∼ CAR(σ2
β1

), σ2
β1

∼ IG(100/9, 1/90),
ω ∼ N(0, 1010), φi ∼ N(µφ, σ2

φ), µφ ∼ N(0, 10), σ2
φ ∼ IG(0.1, 0.1), θi ∼ N(µθ, σ

2
θ),

µθ ∼ N(0, 10), σ2
θ ∼ IG(6.25, 1.25) and σ2 ∼ IG(100/9, 1/90).

[PLEASE INSERT TABLE 1 AROUND HERE]

In Table 2 we present the summary statistics of the posterior distribution of
some important parameters. The posterior distribution of γµ is calculated through
equation (3) for each sampled value of µθ. Since the mean of γµ is negative and
its credible interval do not include zero, we can conclude that, on average of
the counties, the corn crop-yield distribution is slightly skewed to the left. The
posterior distribution of the autoregressive coefficients, φi, for each county shows
that most of them is statistically significant with some of them in a positive
region while other in the negative regions. It is important to note that in previous
works, in the traditional crop insurance literature, agricultural yield was modeled
using ARIMA process [17, 18]. According to [18] the use of serial correlation on
agricultural yields is based on the idea that an adverse climatic event could affect
the yield in the next growing season. In their work, these effects are represented
in the innovations (because weather is not a conditioning variate) and, thus,
suggesting the existence of an MA component. A problem with estimating the
IMA (d, q) process is the need to employ non-linear least squares in small samples.
In this case, convergence and parameter stability become issues. To address these
problems, they replaced the MA (1) process with its AR (4) representation. In our
case, we cannot afford modeling the data set using an AR (4) process, because of
the data limitation. Instead, we capture the serial correlation using only an AR
(1) process.

[PLEASE INSERT TABLE 2 AROUND HERE]

Table 3 compares the ER and BR for the five most important counties, named
Castro, Catanduvas, Marilândia do Sul, Ponta Grossa and Tibagi. As one can
note, all BR equal zero for the 70% level of coverage and are quite low for 75%.
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These results reflect the fact that those five counties present low variability in
terms of yields. At the minimum level of coverage there is no loss in the historical
yield series. In other words, at any point in time the observed yield is lesser than
the guaranteed yield.

[PLEASE INSERT TABLE 3 AROUND HERE]

The comparison between the BR and ER shows great differences. In all cases
the ER overestimate the BR. These results have critical practical implications. In
those counties the climate and soil conditions are ideal for corn. The historical
data of corn yield is quite stable over time in terms of variability suggesting that
these counties have low risk. Charging an inaccurate (overestimate) premium rate
in low risk counties might considerably reduce the demand for such contracts.
Despite the fact that the ER is greater than the BR in Table 3, for all levels of
coverage, there are cases in which the opposite is true. Figure 1 shows the state of
Paraná divided in 10 macro-regions, named MESO.

[PLEASE INSERT FIGURE 1 AROUND HERE]

In Table 4 we show the average premium rates for MESOs 4, 5, 7, 8, 9 and 10,
in which the ER is greater than the BR for almost all levels of coverage. As one
can observe, in MESOs 4, 5, 7, 8 and 9, the ER is much higher than the BR,
except for MESO 10 where rates are quite similar. The ER and BR, at 90% level
of coverage, have almost equal values for MESOs 7 and 10.

[PLEASE INSERT TABLE 4 AROUND HERE]

In riskier regions, such as 1, 2, 3 and 6, the ER underestimate the BR and
overestimate in low risk regions. The northwestern region of the state presents
inappropriate climate and soil conditions for planting corn. In that region farmers
are undercharged according to the BR calculation. On the opposite, farmers are
overcharged in low risk regions. This fact tends to reduce the demand for such
contracts by the high expected yield-low risk producers and increase the demand
for those who really need the insurance contract - the low expected yield-high risk
producers. This fact strengthens the adverse selection problem in the insurance
market.

For illustrative purpose, we will show a comparison between the premium rate
charged by a private insurance company1 and rates calculated in this research.
Rates for Castro, Catanduvas, Marilândia do Sul, Ponta Grossa and Tibagi counties
charged by this company are equal to 4.5%. We found rates completely different in
our empirical analysis and, respectively, equal to 0.183%, 1.679%, 0.178%, 0.314%
and 0.885%, at 90% level of coverage. From the insurer point of view, the probability
of loss is much higher than this research suggests and consequently an inaccurate
premium rate is calculated. At this point, we stress two points when insurance
providers charge 4.5%, in a low risk area: i) producers might opt to manage their
own risk without an insurance mechanism, and ii) the insurance company will
negatively select among the insured pool.

1Rates charged are based only on five years of observations using the empirical rates method.
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6. Concluding remarks

In this study we address the crop yield distribution issue and its empirical appli-
cation of pricing crop insurance contracts using an alternative statistical method
based on Bayesian hierarchical models under the Skew-Normal assumption. When
modelling the generating process of yield data we consider the temporal and spatial
effects and its interactions resulting in spatio-temporal models.

Most of the crop insurance programs in U.S. use a deviation from a linear trend -
two-stage model as in [12], [26] and more recently in [22] in the Brazilian context.
However, in this article we simultaneously model the time trend and temporal
and spatial autocorrelation and obtain premium rate estimates directly (within
the model) in contrast to two-stage methods. A typical two-stage method will first
detrend the time series and then treat the detrended yield data (often referred to as
“normalized yields”) as “observed” data to estimate the premium rate. Thus, this
method fails to adequately capture the uncertainty of the premium rate estimate.
Our approach makes the premium rate calculation less ad hoc, in the sense that
rates are derived directly from a predictive distribution obtained by using the
Markov Chain Monte Carlo algorithm. Moreover, when calculating the rate we
are able to capture its model-based uncertainty through a standard error that is
estimated within the model.

Empirical rates method is commonly used by most of the crop insurance compa-
nies in Brazil when pricing agricultural contracts, which is based on the relation
of the average loss over liability. This method does not take into account any more
advanced statistical analysis. One of the main disadvantages of the empirical rates
method is its dependence on a large number of observations to accurately reflect
the probability distribution [12, 22]. Our work refines the actuarial methodology
used to price crop insurance contracts based on Bayesian spatio-temporal models
and comparing the results with the “ER” used by the Brazilian insurers.

Looking more carefully at the results, we can observe that ER is higher than BR
for low risk areas and lower in high risk areas. It means that the insurance compa-
nies are underpricing the insurance contract for high risk areas and overpricing for
low risk areas. The pure premium rate calculated in our model is actually higher
or lower than the premium rate charged, depending on the situation. The conse-
quence for the insurance provider is the financial loss because high risk producers
may find this situation attractable to demand the insurance contract and low risk
producers might bear the remaining risk themselves.

Our findings have important practical implications. For illustrative purposes con-
sider a situation in which the insurance company underprice an insured located in
Santa Isabel do Iváı county. Instead of charging a premium rate equal to 10%
(Bayesian premium rate), the insurance provider decided to calculate the premium
rate using the empirical rates method, charging 6.5%. Suppose, for instance, the
average liability is equal US$ 1 mi in a pool (5 thousand producers). The average
premium charged is US$ 65 000 instead of US$ 100 000. The average loss is equal
to US$ 35 000 but the total loss is approximately US$ 175 mi.

In a market where historically the total loss ratio (indemnity paid divided by
total premium collected) is greater than one, better actuarial methods (the spatio-
temporal approach proposed in this paper) should be taking into account by in-
surance companies to more effectively address the probability of loss and the ac-
curateness of the premium rate. Despite empirical results can only be applied to
county-level group risk plan, Brazilian insurers use county-level data set as a proxy
to the individual farm-level risks. The Brazilian government just started a national
program to collect farm-level information to solve this problem and correctly price
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and subscribe individual risks.
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Table 1. Expected Predictive Deviance (EPD) for three best-fit competing models for the corn crop-yield in

the state of Paraná, Brazil.

EPD EPD-Goodness EPD-Penalty
Model 1 268.3E+10 268.1E+10 284.6E+7
Model 2 318.6E+10 318.3E+10 337.9E+7
Model 3 236.0E+10 235.7E+10 337.4E+7
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Table 2. Summary statistics of the posterior distribution of the best-fit hierarchical model based on a sample

size of 1 500. S.D., 2.5% and 97.5% are the standard deviation, 2.5 and 97.5 percentiles, respectively.

Parameter Mean S.D. 2.5% Median 97.5%
σ 803.1 20.79 763.8 802.8 844.8
ω 107.9 3.335 101.3 107.8 114.5
σβ1 74.57 6.207 62.85 74.60 87.48
µθ -0.875 0.121 -1.119 -0.876 -0.625
σθ 1.158 0.097 0.993 1.154 1.367
γθ -0.103 0.032 -0.174 -0.101 -0.044
µφ 0.083 0.017 0.048 0.083 0.117
σφ 0.124 0.014 0.098 0.124 0.153
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Table 3. Bayesian (BR) and empirical rates (ER) for different levels of coverage (LC) for Castro, Catanduvas,

Marilândia do Sul, Ponta Grossa and Tibagi counties.

County LC(%) BR(%) ER(%)
70 0.000 0.379
75 0.000 0.730

Castro 80 0.003 1.444
85 0.048 2.464
90 0.183 3.695
70 0.000 0.010
75 0.000 0.019

Catanduvas 80 0.001 0.030
85 0.006 0.043
90 0.017 0.059
70 0.000 0.659
75 0.000 1.226

Marilândia do Sul 80 0.008 2.205
85 0.034 3.528
90 0.178 5.076
70 0.000 1.506
75 0.000 2.202

Ponta Grossa 80 0.002 3.100
85 0.074 4.425
90 0.314 5.981
70 0.000 4.136
75 0.003 5.254

Tibagi 80 0.051 6.373
85 0.241 7.589
90 0.885 9.090
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MESO 1

MESO 2

MESO 3

MESO 5

MESO 4

MESO 6

MESO 7

MESO 8 MESO 9 MESO 10

MESO 1 − Noroeste
MESO 2 − Centro−Ocidental
MESO 3 − Norte−Central
MESO 4 − Norte Pioneiro
MESO 5 − Centro−Oriental

MESO 6   − Oeste
MESO 7   − Sudoeste
MESO 8   − Centro−Sul
MESO 9   − Sudeste
MESO 10 − Metropolitana de Curitiba

Figure 1. State of Paraná divided into 10 macro-regions (MESO).
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Table 4. Bayesian (BR) and empirical rates (ER) for all levels of coverage (LC) by macro-regions (MESO).

70% 75% 80% 85% 90%
MESO BR ER BR ER BR ER BR ER BR ER

1 5.93 2.25 8.17 3.04 10.68 4.02 13.40 5.21 16.22 6.56
2 5.42 1.69 7.81 2.49 10.51 3.49 13.40 4.73 16.35 6.24
3 2.12 1.56 3.23 2.25 4.65 3.13 6.45 4.22 8.65 5.57
6 3.15 1.63 4.28 2.34 5.59 3.24 7.11 4.37 8.87 5.75
4 0.38 2.26 0.64 2.95 1.05 3.82 1.66 4.91 2.54 6.32
5 0.06 1.47 0.17 2.17 0.43 3.15 0.90 4.59 1.74 6.39
7 0.08 1.33 0.32 1.71 0.93 2.26 2.16 3.05 4.15 4.14
8 0.02 1.62 0.09 2.19 0.32 3.03 0.97 3.99 2.33 5.17
9 0.16 1.81 0.42 2.45 0.99 3.23 1.99 4.22 3.52 5.49
10 0.05 0.05 0.15 0.20 0.44 0.53 1.15 1.21 2.51 2.42


