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ESALQ, Av. Pádua Dias, 11 Agronomia/CEP 13418-900, Piracicaba, SP,

Brazil
bDepartment of Agricultural and Resource Economics, North Carolina State

University, Raleigh, NC, USA
cDepartment of Economics, Business and Sociology, Universidade de São

Paulo/ESALQ, Piracicaba, SP, Brazil

This article considers alternative methods to calculate the fair premium

rate of crop insurance contracts based on county yields. The premium rate

was calculated using parametric and nonparametric approaches to estimate

the conditional agricultural yield density. These methods were applied to a

data set of county yield provided by the Statistical and Geography

Brazilian Institute (IBGE), for the period of 1990 through 2002, for

soybean, corn and wheat, in the State of Paraná. In this article, we propose

methodological alternatives to pricing crop insurance contracts resulting in

more accurate premium rates in a situation of limited data.

I. Introduction

Protection against climate changes has been an
important issue in agriculture. Because of the weather

variation, agricultural production varies substan-
tially, reducing the producer income. Producers
usually bear the risk with little or even without any

support.
Over the years, several risk management tools were

created by producers to reduce these type of losses,
including insurance (Harwood et al., 1999).

Traditionally, the private insurance market offers
protection to individuals against insurable risks.

However, in the agricultural sector, risks may not
be completely insurable (Trowbridge, 1989;
Redja, 1995; Hart et al., 1996; Booth et al., 1999;
Skees and Barnett, 1999; Ozaki, 2005).

Several reasons are pointed out to explain the
nonemergence of a private crop insurance market in
these countries: adverse selection (Skees and Reed,
1986; Quiggin et al., 1994), moral hazard (Chambers,
1989; Goodwin and Smith, 1996), systemic risk
(Miranda and Glauber, 1997) and the absence of
actuarial methods to accurately calculate the fair
premium rate. In Brazil, the absence of a suitable
methodology is pointed as one of the main problems
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for the development of an agricultural insurance
market (Rossetti, 1998, 2001).

This article suggests alternative actuarial methods
for pricing crop insurance contracts based on regional
agricultural yield (area-yield insurance), considering
the small number of observations available. The area-
yield insurance has been used in the United States,
India, Sweden and Canada (Miranda et al., 1999).
In Brazil, it is currently offered in the State of the
Rio Grande do Sul. This type of insurance was first
studied by Halcrow (1949) and later, formally
presented by Miranda (1991). Smith et al. (1994)
and Mahul (1999), based on Miranda’s paper,
generalized the model. Skees et al. (1997) showed
some empirical work on area-yield insurance.

II. Statistical Modelling of Agricultural Yield

Over many years, statistical aspects underlying
agricultural yields have been a controversial point
in the literature.1 Precisely, the shape of the distribu-
tion has been discussed extensively. On one hand,
Just and Weninger (1999) concluded that agricultural
yields follow normal distribution. However, others
found evidences against normality (Day, 1965;
Taylor, 1990; Ramirez, 1997; Ramirez et al., 2003).
Alternatively, beta distribution (Nelson and Preckel,
1989), inverse hyperbolic sine transformations (Moss
and Shonkwiler, 1993) and Gamma distributions
(Gallagher, 1987) have been proposed.

The shape of the distribution is particularly
important in the context of crop insurance studies,
because it reflects the risk (probability of loss) of the
producer. In other words, when modelling agricul-
tural yields, one must look at the mass concentrated
at the left tail of the distribution. Taking this fact into
account, several statistical models, have been pro-
posed in the crop insurance literature by different
authors to better reflect the innovation of the
agricultural yield, such as, parametric (Sherrick
et al., 2004; Ozaki, 2005), semiparametric (Ker and
Coble, 2003), nonparametric (Goodwin and Ker,
1998; Turvey and Zhao, 1999), empirical Bayes
nonparametric approaches (Ker and Goodwin,
2000) and spatial-temporal models (Ozaki, 2005).

The choice of a statistical model that better reflects
the conditional density of yields is an important

aspect in the actuarial calculation of the premium
rate. In doing this, one must try to recover the
generating process of data when modelling yield data.
The agricultural yield follows a spatial-temporal
process, in the sense that if we take the average in a
region conditional to the temporal process, one can
recover the conditional density yield f (y|�t) at certain
moment in time and region, where �t is the minimum
� – algebra generated by the information known at
moment t (Ker and Goodwin, 2000). In several
empirical works, the only information known at time
t is the time itself. Thus, in these analyses, the
conditional density is based only on the temporal
generating process of the data.

Problems in modelling yield data

Fair premium rate (or in other words, the expected
loss) correct calculation is an important factor to
insurers so that a crop insurance programme can be
actuarially sound. The fact is that pricing against the
risk of an average farmer will overcharge low-risk
farmers and undercharge high-risk farmers. Thus,
low-risk individuals are less likely to buy, remaining
are only those riskier in the pool. Indemnities rise and
the insurer loses money. Raising rates drives out low-
risk end of pool, becoming smaller and riskier,
increasing losses even more.

To accurately estimate the individual risk of each
producer, insurers must take into account farm-level
yield data. However, this estimation demands a
reliable and long series of data set for each producer.
In practice, this is not possible in developing
countries due to the nonexistence of such informa-
tion.2 To partially overcome such restriction, index-
based crop insurance were developed using aggregate
and longer series, such as, county-level crop yields
(Miranda, 1991).

Another problem related to empirically modelling
agricultural yields is the spatial dependence across
counties. The average value of independent and
identically distributed observations, according to the
central limit theorem (CLT), follows a normal
distribution. But in the case of average observations
of county yields, these observations are spatially
correlated.

For spatial processes, alternative versions of the
CLT, supporting normality assumption are avail-
able.3 However, spatial correlation may or may not

1 The small number of yield observations, in aggregate level and smaller in the individual level (in several countries) makes any
type of statistical analysis a troublesome task.
2Moreover, with small number of observations it is hard to detect structural changes in yields and the occurrence of
catastrophic events in the series.
3 For the dependent spatial process the CLT the normality assumption is acceptable when the dependence dies off quickly as
the distance increase (Guyon, 1995).
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die relatively fast to assure that the average yield
follows a normal distribution (Goodwin and Ker,
2002).

Goodwin (2001)4 argues that, when regular years
are considered, the spatial correlation dies faster
when the distance increases, stabilizing in 0.10 when
the distance between areas is approximately 200
miles. However, if years with droughts are consid-
ered, spatial correlation dies slower, reaching the
same level of 0.10 with 400 miles. Consequently, for
years in which extreme weather events occur, the
systemic risk problem is higher than normal years.

Wang and Zhang (2003), using correlograms to
estimate the spatial dependence for corn, soy and
wheat, using 26 years, for, respectively, 2591, 2000
and 2641 cities in USA, concluded that the correla-
tion dies faster when the distance increases. The
maximum distance estimated for the positive correla-
tion is equal to 570 miles.

In Brazil, the spatial correlation was found to
reduce quickly when the distance increases support-
ing the assumption of normality for yield data. Ozaki
(2005) estimated the parameters of the variogram (in
particular, the range parameter) through the spherical
correlation function, and showed that the average
distance in which the correlation tends to zero is,
respectively, 91 and 82 miles for soybean and corn, in
the period of 1990 through 2002, much less than the
values for the United States. Another important
aspect of the agricultural yield modelling is the trend
and the heteroskedasticity. Those problems appear
when the data generating processes are not constant
or stable over time. The incorporation of new
technologies and more suitable and efficient methods
by farmers increase the level of agricultural yields
over time. Thus, yields observed in the early 80s
cannot be compared with yields in 2004. If this is the
case, yield data must be detrended according to some
polynomial function. Several linear and nonlinear
methods are proposed in the literature for this
purpose. Autoregressive moving average models,
local nonparametric smoothing and splines are
some examples.

In this article, due to the shortness of our data set,
detrend is performed with a first order deterministic
trend model (in t), according toyt ¼ �0 þ �1tþ ut,
where y is the agricultural yield and t¼ 1, . . . , 13.
Series with significant slope coefficient (at the 5%
level) were detrended and the detrended yield was
represented by the error term ut.

The other point, previously mentioned, is the
situation where the yield variability changes over
time (heteroskedasticity). Nonconstant variability

must be diagnosed, according to parametric
(Goldfeld–Quandt) and nonparametric tests and
corrected if necessary.

If the heteroskedasticity is assumed as deviations
from the trend in relation to the level of the
agricultural yields, then the assumption of constant
coefficient of variation is supported. Proportional
errors "t will be calculated dividing the error term ut
by its respective predicted value. The resulting values
are homoskedastic (Goodwin and Ker, 1998).
Goodwin and Mahul (2004) suggest multiplying
(1þ proportional error) by the yield observed in
2004, resulting in normalized yields yn, such that:

yn ¼ ð1þ "tÞy2004 ð1Þ

In doing this we can express yields in terms of 2004
technology.

On the opposite side, if errors are not proportional
to the level of yields, then normalized yields will be
calculated adding the error term to yields observed
in 2004.

yn ¼ ut þ y2004 ð2Þ

In this study, normalized yields are calculated
according to both methods (additively and multi-
plicatively), to check for possible differences in
premium rates. Moreover, because the last observa-
tion released by IBGE is the one observed in 2002, all
residuals will be normalized to 2002 technology level.

III. Description of the Data Set

In Brazil, county-level data series are available for
13 years from the Statistics and Geography Brazilian
Institute (IBGE), in kilograms per hectare, from 1990
to 2002. This article uses yields in counties with more
than 10 years of observations for soybean, corn and
wheat, resulting in 267, 366 and 266 counties in
the State of Paraná, respectively. Figure 1 shows the
evolution of the agricultural yield in the State of
Paraná, for soybean, corn and wheat, in 1990, 1996
and 2002.

In 1990, high yields were presented in the west,
north and middle east region of the state for corn.
This trend remained for 1996 and 2002. In the last
year, counties in the south region improved the
performance ranging in this year between 4800 to
8500 kg/ha. In the case of soybean, the pattern
remained the same for the same period, but the
number of producer counties increased dramatically
during this period.

4 Studying the spatial correlation of corn in USA in the three largest producer States.
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Different patterns can be observed in the case of

wheat. In 1990, counties with high yields were

concentrated in the north and middle East. This

situation changed in 1996 with most of the high yields

counties located in the middle west and west part of

the state. In 2002, a better performance was achieved

basically in the extreme west, south and east.

IV. Parametric Analysis

The methods commonly used to pricing crop

insurance contracts are based on the relation of the

average loss over liability, called empirical rates, and

do not take into account any more advanced

statistical analysis.5 One of the main disadvantages

Fig. 1. Evolution of corn, soybean and wheat yields in the State of Paraná, in 1990, 1996 and 2002, in kilograms

per hectare (kg/ha)
Source: IBGE (2004).

5 Information obtained during personal interview with several private insurance companies operating in Brazil.
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of the empirical rates method is its dependence on a
large number of observations to accurately reflect the
probability distribution.

This study fits two parametric distributions to the
data set, normal and beta distributions, with all
parameters estimated by the maximum likelihood
method. The normal distribution does not allow for
the positive or negative skewness, or in other words,
it is symmetric.

The alternative beta distribution has the advantage
of being flexible, assuming several different shapes
according to the values of the parameters (�, �). The
distribution can be strictly increasing (�>1, �¼ 1),
strictly decreasing (�¼ 1, �>1), U form (�<1,
�<1) or unimodal (�>1, �>1) (Casella and
Berger, 1990). Thus, it can accommodate positive or
negative skewness. Both parametric distributions
have the disadvantages of not being able to model
bimodality or multimodality.

V. Nonparametric Analysis

Another actuarial method presented is the nonparam-
etric analysis of yield data.6 In this case, no prior
specification is given to define the shape of the
distribution, or in other words, it lets the data reveal
the shape of the density.

For actuarial reasons, there are two important
variables to consider when pricing an agricultural
insurance contract: the expected loss and the prob-
ability of loss. The latter is represented by the
probability of yields less than a predetermined yield
value equal to a percentage of the expected yield.

In the nonparametric analysis, some characteristics
of the distribution can be shown, such as, positive
and negative skewness and bimodality. Moreover,
this method does not make any prior assumption on
the shape of the density. Amongst the several types of
the nonparametric density estimators, the histogram
is by far the most popular. To estimate histograms
one must take into account the choice of the origin
and the width of bins h (also known as ‘windows’).

Several histograms can be estimated according to
different values of the origin. Thus many different
interpretations might arise. The width of bins
determine the amount of smoothness of the series.
Despite its simplicity, this estimator presents
disadvantages in relation to the Kernel estimator.

It is straightforward to estimate histograms in only
one dimension, despite the choice of the origin and
the smoothing parameter. But working on an
m-dimensional space, the estimation becomes a
troublesome work. However, one may find it useful
to work with histograms to make exploratory
analysis of the data.

Goodwin and Ker (1998) and Turvey and Zhao
(1999) used the Kernel estimator to estimate the
shape of the conditional yield density and pricing a
crop insurance contract. The Kernel estimator of the
density f̂ðyÞ can be represented as a convolution of the
sample distribution, using some kernel function,
according to Goodwin and Ker (2002), such that:

f̂ ðyÞ ¼

Z
Khðy� vÞdFnðvÞ ð3Þ

where Kh(v)¼ 1/hK(v/h) and Fn(v) is the sample
distribution function.

Basically, the kernel estimator is the sum of ‘jumps’
(bumps) located in each observation, where the kernel
function determines the shape of these jumps, and
the smoothing parameter its width. The larger the
window value, the larger the smoothness and
the details tend to disappear. On the opposite side,
the closer the window to zero, ‘jumps’ will have a
peak shape, enhancing the details in the density.

Some assumptions must be made with respect to K.
The kernel function must be a density function,
nonnegative and symmetric, such that:

R
KðvÞdv ¼ 1.

Moreover,
R
vKðvÞdv ¼ 0 and

R
v2KðvÞdv ¼ �2 6¼ 0. If

one considers the Gaussian kernel function, then �2
will be the variance of the distribution.

As a discrepancy measure of the density estimator f̂
with relation to the true density, Silverman (1986)
adopts the mean integrated squared error (MISE)
given by: Z

E f̂ðyÞ � fðyÞ
h i2

dx ð4Þ

The MISE can be decomposed in two components,
the integrated squared bias and the integrated
variance. Under some assumptions, the former can
be approximated by 1=4h4�2

R
f 00ðyÞ2dy and the

variance by ðnhÞ�1
R
kðvÞ2dv.

Yet, if we choose a high value of the smoothing
parameter to minimize the MISE, the random varia-
tion (variance) is reduced leading to the increase of the
systematic error (bias). On the opposite side, a low
value of the parameter results in higher integrated
variance and lower integrated squared bias.

6 This subsection was based on the results of Silverman (1986).
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Looking for the optimum smoothing parameter

and the kernel that minimizes the MISE, Silverman

shows that if h is the optimum, then:

hopt ¼ �
�2=5
2

Z
KðvÞ2dv

� �1=5 Z
f 00ðyÞ2dy

� ��1=5
n�1=5

ð5Þ

Thus the approximate value for the MISE will be

given by:

5

4
WðKÞ

Z
f 00ðyÞ2dy

� �1=5

n�4=5 ð6Þ

where WðKÞ ¼ �2=52 ð
R
KðvÞ2dvÞ4=5.

The problem of minimizing the MISE is the choice

of minimum W(K ), given the smoothing parameter.

Under some constraints, if the kernel function chosen

is the Epanechnikov kernel W(Ke), then the MISE will

be minimized. Comparing several symmetric kernel

functions W(K), an efficiency index was calculated to
be equal to [W(Ke)/W(K)]5/4. Using the Biweight,

Triangular, Gaussian and Rectangular densities, it

was showed that all kernel functions have a very

close index. Thus, the choice of the kernel function

has little influence under the criteria described earlier.
The choice of the optimum smoothing parameter,

in the case of the Gaussian distribution, will be equal

to 1.06 �n� 1/5, where � is the SD of the yields. If one
wants to consider the deviation from normality,

Silverman (1986) suggests that the following estimate

must be used �¼min (SD interquartiel/1.34).
Moreover, if the factor 1.06 is reduced to 0.9 this

will lead to better empirical results. Consequently,

this estimate of the smoothing parameter was

considered in the analysis.

VI. Empirical Analysis

Because of the small number of observations used to

calculate the premium rate and considering the

sensitive and stability of the nonparametric methods

to small samples, neighbour counties7 information

were also used. Consequently, considering a central

county i observations of the jth neighbour counties in

relation to i were incorporated in order to increase the

number of observations used, to estimate the
conditional yield density and reduce the spatial

dependence between counties. Accordingly, weights

were respectively assigned to a central and m

neighbour counties by:

ðmþ 1Þ

ð2mþ 1Þ

and
1

ð2mþ 1Þ

9>>=
>>;

ð7Þ

In the analysis, counties within 30 and 40miles
(approximately 48 and 64 km) of distance from a
central county were considered. Differences in pre-
mium rates will be analysed, considering the distance
of the neighbour counties.

The largest corn producer was Guarapuava, with
almost 172 000 ton. Soybean and wheat’s largest
producers were respectively, Cascavel and Tibagi,
with approximately 210 000 and 60 000 ton.

The effect of the distance ‘d’ on the densities of
yield distribution is shown in Fig. 2. Figure 3 presents
the distribution of yields using the corrected and
original series.

Figure 2 shows significant differences in the mass
concentration in the left tail of the density. This
difference is larger in the case of corn and wheat. In
both cases, the probability of loss (the area under the
density where yields are less than the trigger yield) is
larger for d¼ 30 than d¼ 40. Additionally, because
the premium rate is directly proportional to the
probability of loss, higher rates are expected in the
case of corn and wheat in the counties of Guarapuava
and Tibagi, compared to soybean. In fact, this is
confirmed in the next section.

Some other interesting features can be pointed in
the densities. Bimodality is considerably visible in the
case of corn, hence one can expect that higher yields
can be considered more frequently than lower yields
in Guarapuava county. In the case of soybean,
bimodality is close to the mean, for d¼ 30, but not
for d¼ 40. Moreover, the low variance suggests that
values closer to the mean are more likely than
extreme values. The wheat in Tibagi County, shows
little evidence of bimodality, but for higher levels of
coverage, the premium rate tends to be higher than
for low levels of coverage, due to the fact that the
probability of loss is larger when d¼ 30.

In addition to the distance, another point must be
investigated. The fact that yield series is relatively
short creates difficulties to check the presence of
heteroskedasticity. Consequently, the next para-
graphs study the densities in both cases. First, when
yield series are adjusted correcting the residuals,
resulting in proportional errors. Second, when series
are nonadjusted for heteroskedasticity. In the latter

7We consider neighbour counties not only the contiguous counties to a central county i but all those counties located within a
circular area with radius equal to d. Consequently all counties whose centroids were located within this circle were considered
neighbours to i.
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case, we assume that series are homoskedasticity.

In both cases, the observations were detrended and

normalized to reflect the 2002 technology.
Corn, in Fig. 3, shows a clear bimodality in both

cases. But, there are little differences in the prob-

ability of loss, such that the probability in the

adjusted series is smaller than the probability

considered in the other case when series are adjusted.

In the case of soybean, differences are more

enhanced. In the original series, the density is less

peaked than the density estimated considering the

adjusted case. In the latter case, the density shows

bimodality (Fig. 2) and smaller variance. Further

yields above the average, around 2514 kg/ha, for

Cascavel County, are more frequently than low

yields, consequently for this county one can expect

lower premium rates in relation to other counties.

In the case of wheat (Tibagi County), one can
notice some differences in the probability of loss
regarding the different levels of coverage between the
two graphs. The value of this probability for the level
of coverage of 70, 80 and 90% for the nonadjusted
series are, respectively, 0.21, 0.32 and 0.45 and equal
0.15, 0.23 and 0.33 for the adjusted series. The former
shows average values around 30% larger than the
adjusted series.

VII. Application: Pricing Crop
Insurance Contracts

The probability of loss is equal in the area under the
curve when yield is smaller than the guarantee yield.
Thus, let � be the level of coverage, such that
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Fig. 2. Nonparametric densities (10�4) for corn, soybean and wheat, according to the distance d, for corn (Guarapuava County),

soybean (Cascavel County) and wheat (Tibagi County)
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0< �<1 and ye be the expected yield. The prob-
ability of loss will be calculated through the area
under the density, using the trapezoidal rule to
estimate it numerically. The premium rate will be
given by (Goodwin and Ker, 1998):

Premium rate ¼
FYð�y

eÞEY �y
e � Yjy < �yeð Þ½ �

�ye
ð8Þ

where E is the expectation operator and F is the
distribution function.

Next, in the tables, we will show the premium
rates, separated by methods of estimation, con-
sidering the correction of the series, the distance in
relation to a central county and the level of
coverage for the largest counties producers of
corn, soybean and wheat (respectively, Cascavel,
Guarapuava and Tibagi Counties). Figures 4
through 9 illustrate the premium rates for each
county in the State of Paraná for corn, soybean

and wheat calculated through the nonparametric
method, at the level of coverage 90% with both
distances and series correction changing.

In Tables 1–3, are presented the premium rates of
corn, soybean and wheat, for different levels of
coverage. These tables also present the rates calcu-
lated through the parametric method; specifically we
adjusted the normal and beta distribution to the data.

Table 1 shows rates for soybean in Cascavel
county. Notice that beta rates are much larger than
empirical, nonparametric and normal rates, suggest-
ing that soybean yields in Cascavel have positive
skewness considering the beta distribution.
Moreover, nonadjusted series rates are much higher
than adjusted series for 30 and 40 miles, suggesting
that heteroskedasticity, if present, can affect the
premium rates calculation in the case of soybean in
Cascavel.

The choice of the distance ‘d’ can influence the
calculation of the premium rate. The larger the value

0

0.5
1

1.5

2

2.5
3

3.5

0

0.5
1

1.5

2

2.5
3

3.5

0
1
2
3
4
5
6
7
8

0

2

4

6

8

10

12

14

0
1
2
3
4
5
6
7
8

0

2

4

6

8

10

12

14

Corn: not corrected series Corn: corrected series

Soybean: not corrected series Soybean: corrected series

Wheat: not corrected series Wheat: corrected series

71
00

14
20

21
30

28
40

35
50

42
60

49
70

56
80

63
90

71
00

78
10

85
20

92
30

99
40

10
65

0

11
36

0

71
00

14
20

21
30

28
40

35
50

42
60

49
70

56
80

63
90

71
00

78
10

85
20

92
30

99
40

10
65

0

11
36

0

50
00

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00 50

00

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

52
00

10
40

15
60

20
80

26
00

31
20

36
40

41
60

46
80

52
00

57
20

62
40

67
60

72
80

78
00

83
20 53

00

10
60

15
90

21
20

26
50

31
80

37
10

42
40

47
70

53
00

58
30

63
60

68
90

74
20

79
50

84
80

Fig. 3. Nonparametric densities (10�4) for corn, soybean and wheat, for adjusted and nonadjusted series (distance fixed at

30miles)
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of ‘d’, the greater the influence of distant counties on

the density estimation (affecting premium rates).

Specifically, in the case of soybean the larger

the distance, the larger the premium rate for

both series.
Table 1 shows that rates for the adjusted series are,

on an average, 35% higher for d¼ 40 than d¼ 30 and

12% larger for the nonadjusted series. Rates are

higher, on average, 28 and 18%, respectively, for the

adjusted and nonadjusted series.
Table 2 presents corn rates in Guarapuava County.

Contrarily to soybean, in the case of corn, the larger

the distance, the smaller rates considering the

adjusted series. Using nonadjusted series, rates

increase with the distance.

The normal rates are smaller than the beta rates,

suggesting that the beta distribution has positive

skewness. Moreover, when comparing both series, for

the distance d¼ 30, the adjusted series show higher

rates than the nonadjusted series for all levels of

coverage.
Rates for the nonadjusted series (when d¼ 40) are

higher than beta rates for both methods. This

situation suggests that the incorrect specification of

the parametric distribution can have a tremendous

impact on the calculation of the premium rate.
Table 2 shows that rates for the adjusted series are

21% higher on average for d¼ 30. Rates are 24%

higher for d¼ 30 than for d¼ 40 considering the

adjusted series. For the nonadjusted series, rates are

Premium rates
Counties not included
0–3
3.01–6
6.01–9
9.01–12
12.01–15

100 0 100 miles

N

EW

S

Premium rates
Counties not included
0–3
3.01–6
6.01–9
9.01–12
12.01–15

100 0 100 miles

N

EW

S

Fig. 4. Nonparametric rates for corn – series adjusted for heteroskedasticity (level of coverage at 90%), distance fixed at
30miles (left) and 40miles (right)
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Fig. 5. Nonparametric rates for corn with nonadjusted series for heteroskedasticity (level of coverage at 90%), distance fixed at

30 miles (left) and 40 miles (right)
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46 and 48% higher, on average, for d¼ 40,
respectively.

In Table 3, we show the premium rates for wheat in
Tibagi County. Although there are differences in the
rates, such differences are less expressive than the
corn and soybean case.

Comparing the two series, one can notice that rates
for the adjusted series in are higher for the level of
coverage of 70 and 75% for both distances and lesser
for the other levels of coverage. Rates for the adjusted
series are lesser for all levels of coverage.

In relation to the normal rates, the beta rates are
also higher. In this case, when distance is considered,
the situation is inverse the one observed in the case of
soybean, or in other words, the larger the distance the

lesser the rate. Rates for the nonadjusted series are,
on average, 15% higher for d¼ 30 than for d¼ 40.
Additionally, when the levels of coverage increase,
rates also rise but at decreasing rates, or in other
words, for the levels 70 to 90%, the differences are,
respectively, 21, 18, 16, 13 and 9%. Rates for the
adjusted series are, on average, 13% higher when
d¼ 30. Looking at the nonadjusted series, one can
notice that rates are higher for d¼ 30, on average,
14 and 12%, respectively.

Looking at Tables 1–3, one can realize that rates
calculated by the nonparametric approach are higher
than empirical rates. This situation happens because
the nonparametric rates are smoothed versions of the
empirical rates. The smoothing process tends to add
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0 100 Miles

Fig. 6. Nonparametric rates for soybean with series adjusted for heteroskedasticity (level of coverage at 90%), distance fixed at

30 miles (left) and 40 miles (right)
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Fig. 7. Nonparametric rates for soybean with nonadjusted series for heteroskedasticity (coverage at 90%), distance of 30 miles

(left) and 40 miles (right)
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Fig. 8. Nonparametric rates for wheat, series adjusted for heteroskedasticity (coverage at 90%), distance of 30 miles (left) and

40 miles (right)
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Fig. 9. Nonparametric rates for wheat, nonadjusted series for heteroskedasticity (coverage at 90%), distance of 30 miles (left)

and 40 miles (right)

Table 1. Premium rates (%) for soybean, in Cascavel County

Empirical premium rates Nonparametric premium rates

Adjusted series Nonadjusted series Adjusted series
Nonadjusted
series

LC Normal rates Beta rates d¼ 30 d¼ 40 d¼ 30 d¼ 40 d¼ 30 d¼ 40 d¼ 30 d¼ 40

70 0.3501 1.1364 0.0513 0.1169 0.6120 0.6759 0.0689 0.1400 0.7198 0.8979
75 0.6965 1.8961 0.0830 0.2118 1.0840 1.1121 0.1807 0.2819 1.1814 1.4252
80 1.2288 2.9264 0.3813 0.5099 1.4970 1.6848 0.4244 0.5561 1.7041 2.0766
85 1.9712 4.4149 0.7263 0.9049 2.0600 2.5404 0.8518 1.0213 2.4641 3.0094
90 3.1059 6.3614 1.3001 1.5077 2.9120 3.5944 1.5062 1.7025 3.4764 4.2388
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mass in the inferior tail of the distribution and
consequently increase rates.

For illustrative purpose, we will show a compar-
ison between the premium rate charged by a private
insurance company in the state of São Paulo8 and
rates calculated in this research, for corn and
soybean. It is important to point out that the crop
insurance offered by this company covers the credit
loan and not the yield, although the indemnity is
based on the reduction of the agricultural production.
Further, the expected loss and premium rate are
based on county yields.

For soybean (Cascavel County) and corn
(Guarapuava County) rates are, respectively, 4 and
4.5%. We found in our empirical analysis
(nonparametric approach) that rates for soybean
are on an average 1.6 and 3.9% for the adjusted and
nonadjusted series, respectively (level of coverage of
90%). Average rates for corn are equal to 8.85%
and 8.95%.

One can notice the great variability on premium
rates. Rates charged by this company are much
higher for soybean, in the adjusted case and much
lesser for corn, in both cases (adjusted and non-
adjusted). In the latter case, producers are being
undercharged.

VIII. Conclusion

In this research, we analysed alternative statistical
methods for pricing crop insurance contracts based
on area-yield with IBGE’s aggregate yield data. Corn,
soybean and wheat series were adjusted through
parametric analysis in Cascavel, Guarapuava and
Tibagi Counties. We used the normal and beta
parametric distributions.

Results showed that beta rates are higher than
normal rates for all levels of coverage considering the
empirical rates and the nonparametric rates for corn,
soybean and wheat. For these three counties, results
suggest some positive skewness in the beta
distribution.

Rates in the empirical and nonparametric cases are
quite different in both cases: the adjusted and
nonadjusted series in Tables 1, 2 and 3. Empirical
rates method is commonly used by most of the crop
insurance companies in Brazil. Looking more care-
fully at the results, for all levels of coverage, rates are
higher in the nonparametric approach. It means that
insurance companies are underpricing the insurance
contract. The pure premium rate is actually higher
than the premium rate charged. The consequence for
the insurer company is the financial loss due to the

Table 2. Premium rates (%) for corn, in Guarapuava County

Empirical premium rates Nonparametric premium rates

Adjusted series Nonadjusted series Adjusted series
Nonadjusted
series

LC Normal rates Beta rates d¼ 30 d¼ 40 d¼ 30 d¼ 40 d¼ 30 d¼ 40 d¼ 30 d¼ 40

70 2.083 3.635 3.224 2.260 2.7038 5.4815 4.518 3.270 2.7993 6.4311
75 2.791 4.739 4.355 3.470 3.5492 6.8271 5.706 4.280 3.6722 7.5549
80 3.778 6.217 5.797 4.960 4.2889 8.0417 7.021 5.400 4.5412 8.6799
85 4.901 7.963 7.643 6.280 5.0048 9.1484 8.431 6.540 5.5478 9.9206
90 6.330 9.815 9.403 7.4500 6.3087 10.1873 9.906 7.7900 6.7250 11.2357

Table 3. Premium rates (%) for wheat, in Tibagi county

Empirical premium rates Nonparametric premium rates

Adjusted series Nonadjusted series Adjusted series
Nonadjusted
series

LC Normal rates Beta rates d¼ 30 d¼ 40 d¼ 30 d¼ 40 d¼ 30 d¼ 40 d¼ 30 d¼ 40

70 1.1889 2.4382 2.9897 2.3477 2.7410 2.1906 3.4987 2.8571 3.7526 3.1213
75 1.7825 3.4711 3.7435 3.0671 3.6470 3.0301 4.3912 3.7330 4.7152 4.0751
80 2.5453 4.7907 4.6911 3.9635 4.7255 4.1162 5.4253 4.6800 5.8450 5.1020
85 3.5976 6.4816 5.7267 4.9860 6.0738 5.4861 6.5087 5.8878 7.0129 6.4051
90 4.9642 8.4299 7.1103 6.4530 7.5325 6.9222 7.8486 7.2912 8.4467 7.8854

8Rates charged are based only on five years of observations using the empirical rates method.
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lower rate charged and high-risk producers may find
this situation attractable to demand the insurance
contract increasing the probability to receive the
indemnity.

Considering, e.g. that a insurance company sells to
a soybean producer a insurance contract in the
Cascavel County charging 3.5944% (nonadjusted
series using the empirical rates method with distance
equal 40miles) instead of 4.23885% (nonparametric
method). Suppose, for instance, the average liability
is equal to US$ 1 million in a pool (20 000 producers).
The average premium charged is approximately US$
36 000 instead of US$ 42 400. The average loss is
equal to US$ 6400, but the total loss is approximately
US$ 128million.

In a market where historically total loss ratio
(indemnity divided by total premium) is greater than
one, better actuarial methods (the nonparametric
approach proposed in this article) should be taking
into account by insurance companies to calculate the
premium rate.

Futures researches will study the conditional yield
density modelling at the farm level and rating an
insurance contract based on individual agricultural
yields using some of the methods discussed in this
research and alternative approaches that take the
spatial correlation between farms into account.

Acknowledgements

Ozaki and Shirota are with the University of São
Paulo, Brazil. Goodwin is with North Carolina
State University. Research support from the North
Carolina Agricultural Research Service and CAPES
(Brazil) are gratefully acknowledged.

References

Booth, P., Chadburn, R., Cooper, D., Haberman, S. and
James, D. (1999) Modern Actuarial Theory and
Practice, Chapman and Hall, London, p. 716.

Botts, R. R. and Boles, J. N. (1958) Use of normal-curve
theory in crop insurance ratemaking, Journal of Farm
Economics, 40, 733–40.

Casella, G. and Berger, R. L. (1990) Statistical Inference
(Ed.) Brooks/Cole Publishing Company, California,
p. 650.

Chambers, R. G. (1989) Insurability and moral hazard in
agricultural insurance markets, Americal Journal of
Agricultural Economics, 71, 604–16.

Day, R. H. (1965) Probability distributions of field crop
yields, Journal of Farm Economics, 47, 713–41.

Gallagher, P. (1987) US Soybean yields: estimation and
forecasting with nonsymmetric disturbances, American
Journal of Agricultural Economics, 69, 796–803.

Goodwin, B. K. (2001) Problems with market insurance in
agriculture, American Journal of Agricultural
Economics, 83, 643–9.

Goodwin, B. K. and Ker, A. P. (1998) Nonparametric
estimation of crop yield distributions: implications
for rating group-risk crop insurance contracts,
American Journal of Agricultural Economics, 80,
139–53.

Goodwin, B. K. and Ker, A. P. (2002) Modeling price and
yield risk, in A Comprehensive Assessment of the
Role of Risk in US Agriculture (Eds) R. E. Just and
R. D. Pope, Kluwer Academic Publisher,
Massachusetts, p. 586.

Goodwin, B. K. and Mahul, O. (2004) Risk modeling
concepts relating to the design and rating of agricul-
tural insurance contracts, World Bank.

Goodwin, B. K. and Smith, V. (1996) Crop insurance,
moral hazard, and agricultural chemical use, American
Journal of Agricultural Economics, 78, 428–38.

Guyon, X. (1995) Random Fields on a Network: Modeling,
Statistics and Applications, Springer Verlag,
New York.

Halcrow, H. G. (1949) Actuarial structures for crop
insurance, Journal of Farm Economics, 31, 418–43.

Hart, D. G., Buchanan, R. A. and Howe, B. A. (1996)
The Actuarial Practice of General Insurance, The
Institute of Actuaries of Australia, Australia, p. 592.

Harwood, J., Heifner, R., Coble, K., Perry, J. and Agapi, S.
(1999) Managing risk in farming: concepts, research
and analysis. Agricultural Economic Report 774,
No. Economic Research Service, US Department of
Agriculture.

Ibge (2004) Available at www.ibge.gov.br (accessed
January 2004).

Just, R. E. and Weninger, Q. (1999) Are crop yields
normally distributed?, American Journal of
Agricultural Economics, 81, 287–304.

Ker, A. P. and Coble, K. (2003) Modeling conditional yield
densities, American Journal of Agricultural Economics,
85, 291–304.

Ker, A. P. and Goodwin, B. K. (2000) Nonparametric
estimation of crop insurance rates revisited, American
Journal of Agricultural Economics, 83, 463–78.

Mahul, O. (1999) Optimum area yield crop insurance,
American Journal of Agricultural Economics, 81, 75–82.

Miranda, M. J. (1991) Area-yield crop insurance recon-
sidered, American Journal of Agricultural Economics,
73, 233–42.

Miranda, M. J. and Glauber, J. W. (1997) Systemic risk,
reinsurance, and the failure of crop insurance markets,
American Journal of Agricultural Economics, 79,
206–15.

Miranda, M., Skees, J. and Hazell, P. (1999) Innovations
in agricultural and natural disaster insurance for
developing countries. Working paper, Dep. of Agr.,
Envir. and Development. Econ., The Ohio State
University.

Moss, C. B. and Shonkwiler, J. S. (1993) Estimating yield
distributions with a stochastic trend and nonnormal
errors, American Journal of Agricultural Economics, 75,
1056–62.

Nelson, C. H. and Preckel, P. V. (1989) The conditional
beta distribution as a stochastic production function,
American Journal of Agricultural Economics, 71,
370–8.

Parametric and nonparametric statistical modelling 1163

D
ow

nl
oa

de
d 

by
 [

U
Q

 L
ib

ra
ry

] 
at

 0
7:

22
 1

4 
Ju

ne
 2

01
5 



Ozaki, V. A. (2005) Métodos atuariais aplicados à
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