Analytical methods and performance criteria

Ron Hoogenboom (ron.hoogenboom@wur.nl)

EU Limits for food and feed

Exposure population around TWI

Food levels should be further reduced

• Limits should not result in high non-compliance rates: "strict but feasible"

Eventual goal is reduction of exposure below TWI

Establishment of EU-limits (since 2001) to gradually reduce the levels and exposure

Inventory of existing levels

- First maximum level (ML) dioxins only
- In 2006: dioxin-like PCBs: sum TEQ, ML dioxins kept
- Limit around 90-95th percentile; so 5-10% above limit
- Also action levels (2/3 of ML)
 For dioxins and for dl-PCBs

"Strict but feasible"

Kind of ALARA but "reversed"

- ALARA: as low as reasonable achievable
- M(R)Ls may be lower than required for protection
- Eg based on GAP in case of pesticides

Some confusion: witch hunt on dioxins and PCBs

MLs protective?

Not necessarily

Example:

- ML fish dioxins and dl-PCBs: 6.5 pg TEQ/g fish
- Recommended intake: 300 g/week (2 portions)
- Intake: 1950 pg TEQ, about 30 pg TEQ/kg bw/week
- TWI: 14 pg TEQ/kg bw/week
- In practice lower but fish is important source
- Similar applies for other food products
- So, products just below the MLs not necessarily safe

Food limits (since July 2002)

Many different limits

- Limits for pork (1), poultry (2), beef, milk and eggs (3), expressed in pg TEQ/g fat
- Limit for fish: 4 pg TEQ/g fish
- First only dioxins; since 4-11-2006 also planar PCBs
- New limits in 2012: change to "new" TEFs 2005
 - Food: Regulation (EU) No 1259/2011 amending Regulation (EC) No 1881/2006
 - Feed: Regulation (EU) No 277/2012 amending Annexes I and II to Directive 2002/32/EC

Action and maximum levels

(EC) 1881/2006 and 2011/516/EU

Maximum and action levels

If higher than maximum levels

- Not allowed to sell the products
- Recall
- Not allowed to dilute

If higher than action levels

- Further action required to find the source of the contamination
- Follow-up still limited

Screening and/or confirmation

Both screening and confirmatory methods can be applied

Screening methods are:

- high throughput, often more rapid and require cheaper equipment: overall cheaper
- Can be used to separate negative samples from suspected samples
- Cannot be used for final confirmation of the positive result in official control

Proper discrimination between negative and suspected samples essential

Analytical methods

Confirmatory methods

Required for proving the identity of compounds

- Required for establishing level
- Requires use of MS-technologies
- Therefore relatively expensive, low throughput
- Confirms known compounds

Screening methods (examples)

Bioanalytical methods

- Immunoassays
- Receptor assays
- Bioassays
- Chemical analytical methods
 - Non-MS based techniques (UV, fluorescence)
 - MS-based LC- or GC, including
 - Multi-methods (e.g. pesticides, mycotoxins, veterinary drugs, dioxins and PCBs)
 - Untargeted screening GC- or LC-MS

Bioassays at RIKILT

- Bacterial assays for antibiotics
- DR CALUX-assay for dioxins and dioxin-like PCBs
- Yeast and cell assays for hormonal compounds
 - Estrogens, androgens, corticosteroids, etc.
- N2a-assay to replace mouse bioassay for marine biotoxins
 - MBA still widely applied
- PDE-5 inhibitor test for viagra-like compounds (supplements)
- Beta-receptor assay for beta-agonists (supplements)

Quality control on application of methods

Quality of results?

Proper validation and accreditation

 ISO 17025
 Method is "fit for purpose"

 Demonstration of correct performance

 Analysis of internal control samples
 Participation in proficiency tests

Role of reference laboratories

Various classes of residues, bacteria and contaminants

- For each class EURL (European Reference Laboratory) appointed
 - Existing national institutes or JRCs (Joined Research Centre)
 - Based on tenders and application
- Per class in each country at least one NRL (National Reference Laboratory)
- In addition OLs (Official Laboratories)

Some examples

EURL dioxins and PCBs: CVUA Freiburg

- EURL mycotoxins: JRC Geel
- EURL heavy metals: JRC Geel
- EURL marine biotoxins: ASEAN Vigo
- EURL pesticides: 4 different EURLs
- EURL hormones: RIKILT Wageningen

Task EURL

Described in EU Regulation 882/2004

- Tasks include
 - Organization workshops for NRLs (at least once a year)
 - Discussion on new developments in legislation
 - Discussion of methods
 - Support of EU authorities (DG SANTE)
 - Organization of PT-tests for NRLs (OLs)
 - Support of NRLs to improve methods
 - Support of NRLs in case of conflicts

Task NRLs

Participation in EURL workshops
 Participation in PT-tests
 Support national authorities
 Support Official Laboratories

 Exchange of samples
 Advice on improving methods

• Confirmation of conflicting results

PT-test EURL: dioxins/PCBs in salmon

Proficiency test on the determination of PCDD/Fs and PCBs in Fish 2011

EU-RL for Dioxins and PCBs in Feed and Food

LOQs (limit of quantification)

Should be low enough to check for compliance

- Often reporting limit close to maximum level (50%)
- But would be better if detect background levels detected
 - Reduce upperbound levels
 - Exposure assessment (e.g. by EFSA)
 - Trend analysis
 - In case of dioxins/dl-PCBs LOQ <1/5 of ML

Performance criteria or prescribed methods?

Criteria give more flexibility for changes

For dioxins and dl-PCBs

- Commission Directives 2002/69/EC (food) and 2002/70/EC (feed): also application of bioassays
- Upgraded to Commission Regulations EC (No) 1883/2006 (food) and 152/2009 (feed)
- Replaced by Commission Regulations EC (No) 252/2012 (food) and 278/2012 (feed)

Changes based on the work of expert groups

• Nowadays EURL/NRL network

Performance criteria for whom?

- Apply for official control
- And in the field of fats for feed also for private laboratories (EC 225/2012)
 - Will be extended to other matrices

Methods for dioxins and PCBs

GC/HRMS or GC/MS/MS: reference method

□ GC/HRMS: confirmation

- detection at pg/g levels
- □ removal of fat
- removal of pesticides
- removal non-dl PCBs
- □ detection with GC/HRMS or GC/MS/MS
- Different columns needed
 - Automated clean-up
- □ Use of 13C-standards
- Expensive method

Relevant issues confirmatory methods

Application of lower- and upperbound principle

- Upperbound: levels of non-detected congeners are assumed to be equal to zero/LOQ
- Lowerbound: non-detects set to zero
- Upperbound level used for checking compliance
- And for exposure assessment

Effect ub vs lb for samples with low levels

Upperbound levels are a clear overestimation of the level
 So GC/HRMS levels look OK but are not

Relevant issues confirmatory methods

Measurement uncertainty

- The measurement uncertainty of the method should be established and levels corrected for this
- Based on reproducibility of the analysis
- So e.g. 1.15 may be reduced to 1.0 before checking compliance (15% MU)
- Also take into account result PT test (bias)
 - E.g. due to less good standards

Non-compliance of samples

Can only be based on confirmatory analysis

 After application of measurement uncertainty

 And when reproduced in second independent analysis

 Also to exclude mix-up

 Applies also to action levels/thresholds

GC/HRMS: allows use of patterns

CALUX bioassay

(DR) CALUX: screening removal negative samples confirmation suspects

At RIKILT used since 1998

Almost every week

CALUX screening assay

Estimation of level in sample

EU Directive performance criteria

Development

- Initially from expert group (2001)
- Revised by WG EURL/NRLs

CALUX is a screening method (yes/no answer)

 Estimation may be given; support confirmation analysis

Should be in BEQs and not TEQs

- Relative response congeners in test not identical to TEFs
- Also other compounds (w/o TEF) may show response
- Screening result should be recognizable

False-compliant rate

What fraction of positives can be missed?

Initially set at 1%

- Difficult to prove compliance
- Hundreds of positive samples need to be analyzed
- Not clear if towards ML or AL
- In other areas 5% is used (EC 2002/657)
- Therefore proposal to set it at 5%
- Refers to maximum limit, not action limit
 - Performance towards action limit should be evaluated

Screening versus confirmation

Screening should not miss positive samples

 Chance less than 5%

 Confirmation should not falsely decide on positive result

 Chance less than 5%
 Application of measurement uncertainty

establish relation between screening and confirmatory method

(No) 252/2012 (food) and 278/2012 (feed)

Analyze 4 samples in 6-fold with CALUX Levels around ML

Proposal: use 2/3 ML (≈AL) as cut-off for screening

RIKILT Wageningen <mark>ur</mark>

Estimation of levels Eggs during incident with corn (2010)

Overestimation of levels in eggs, also in the corn

Apparent recovery

Estimated by comparison of screening and confirmatory result

When solely based on TCDD curve, includes:

- Recovery during extraction and clean-up
- Differences CALUX-REPs and WHO-TEFs
- Possible other effects (e.g. DMSO)

Effect of REPs on apparent recovery (rat cells)

	Belgium	cholin chloride	kaolinic clay	carbosan-Cu	bakery waste
2,3,7,8-TCDF	25.8		0.0	11.0	0.5
2,3,7,8-TCDD	23.0	2.2	86.0	19.0	0.4
1,2,3,7,8-PeCDF	35.6	0.1	0.0	71.4	0.4
2,3,4,7,8-PeCDF	329.4	0.2	0.0	308.3	2.2
1,2,3,7,8-PeCDD	15.9	2.4	35.1	59.1	0.4
1,2,3,4,7,8-HxCDF	31.7	0.7	0.0	196.6	0.2
1,2,3,6,7,8-HxCDF	3.5	0.2	0.0	89.6	0.1
2,3,4,6,7,8-HxCDF	8.4	0.3	0.0	123.8	0.1
1,2,3,7,8,9-HxCDF	2.0	0.2	0.0	117.0	0.1
1,2,3,4,7,8-HxCDD	3.3	2.7	6.6	50.6	0.1
1,2,3,6,7,8-HxCDD	0.0	10.9	6.5	35.8	0.1
1,2,3,7,8,9-HxCDD	0.4	4.8	16.4	28.4	0.1
1,2,3,4,6,7,8-HpCDF	2.6	4.4	0.0	59.8	0.1
1,2,3,4,7,8,9-HpCDF	0.0	1.3	0.0	31.1	0.0
1,2,3,4,6,7,8-HpCDD	0.1	111.1	24.9	86.7	0.1
OCDF	0.2	11.0	0.0	33.6	0.0
OCDD	0.0	13.4	21.8	18.4	0.1
	482.1	165.9	197.2	1340.1	4.9
	781 7	154 7	297.3	2025 6	81
	62	107	66	66	61

Use of reference samples

- Required to correct for background and apparent recovery
- Levels should be in the range of interest (AL/ML)
- Should not lead to underestimation of the levels
 - Would cause false-negatives
 - Mixture better than TCDD only
- References might be used to make calibration curve
 - Automatic correction for background and recovery

Choice for screening vs confirmation

- Both have advantages/disadvantages
- Choice depends on purpose analysis and number of samples
- Screening allows higher throughput (incidents)
 - Especially if most samples negative
 - GC/MS ub level often not be a real level
- Confirmation gives a figure
 - But often below LOQ: <LOQ or upperbound level
 - No clear advantage confirmation method

CALUX-analyses individual eggs

Practical performance

Application at RIKILT

Certain fraction of false-positives not a big issue

 Keep GC/HRMS running (emergency task)

 Screening approach

 Response > reference sample: suspected
 Based on AL dI-PCBs for most matrices

 Also possible to construct calibration curve with reference samples

 Less dependent on variation in response reference

- Less dependent on variation in response reference sample
- Cut-off closer to real AL

Calibration curve of reference samples (butter fat)

January 2006: Dioxins in recycled fat from gelatin production

Sample number	Level	Respons	Decision	
	pg TEQ/g	mean SD		
Blank fat		67	13	
Ref 1	0.4	75	2	
Ref 2	1.0	102	6	
Ref 3	1.5	168	13	
Ref 4	3.1	246	37	
200163193	?			

Hoogenboom et al. 2007

January 2006: Dioxins in recycled fat from gelatin production

Sample number	Level	Respons	Decision	
	pg TEQ/g	mean SD		
Blank fat		67	13	
Ref 1	0.4	75	2	
Ref 2	1.0	102	6	
Ref 3	1.5	168	13	
Ref 4	3.1	246	37	
200163193	?	941	77	suspected

Hoogenboom et al. 2007

	ALs ¹	REF	DR CALUX		
Matrix	pg TEQ/ g fat	pg TEQ/ g fat	tested	suspected > REF	
Pork	0.6/0.5	0.5	94	0	
Poultry	1.5/1.5	0.9	54	0	
Bovine	1.5/1.0	0.9	87	10	
Sheep	1.5/1.0	0.9	79	36	
Deer ⁴	1.5/1.5	0.9	6	6	
Eggs	2.0/2.0	1.9	106	17	
Milk	2.0/2.0	1.9	78	3	
Total			504	72	

1. ALs for dioxins/dl-PCBs,

	ALs ¹	REF	DR (CALUX	HRGC/HRMS (AL/ML+mu)				
Matrix	pg TEQ/ g fat	pg TEQ/ g fat	tested	suspected > REF		Samples >AL ^{2,5}	Samples >ML ^{3,5}		
Pork	0.6/0.5	0.5	94	0		0 (0/0)			
Poultry	1.5/1.5	0.9	54	0		0 (0/0)			
Bovine	1.5/1.0	0.9	87	10		5 (0/5)			
Sheep	1.5/1.0	0.9	79	36		11 (6/10)	1 (0/1)		
Deer ⁴	1.5/1.5	0.9	6	6		5 (3/5)	4 (3/4)		
Eggs	2.0/2.0	1.9	106	17		0 (0/0)			
Milk	2.0/2.0	1.9	78	3		0 (0/0)			
Total			504	72		21 (9/20)	5 (3/5)		

- 1. ALs for dioxins/dl-PCBs,
- 2. Samples exceeding one or both ALs (samples exceeding ALs for dioxins/dl-PCBs),
- 3. Samples exceeding one or both MLs (samples exceeding MLs for dioxins/sum),
- 4. No official limit for deer; for comparison the limits for game were used,
- 5. evaluation against AL and ML included 20% measurement uncertainty

	ALs ¹	REF	DR (CALUX	HRGC/HRMS (AL/ML+mu)				
Matrix	pg TEQ/ g fat	pg TEQ/ g fat	tested	suspected > REF	Samples >REF	Samples >AL ^{2,5}	Samples >ML ^{3,5}		
Pork	0.6/0.5	0.5	94	0	0	0 (0/0)			
Poultry	1.5/1.5	0.9	54	0	0	0 (0/0)			
Bovine	1.5/1.0	0.9	87	10	8	5 (0/5)			
Sheep	1.5/1.0	0.9	79	36	35	11 (6/10)	1 (0/1)		
Deer ⁴	1.5/1.5	0.9	6	6	6	5 (3/5)	4 (3/4)		
Eggs	2.0/2.0	1.9	106	17	4	0 (0/0)			
Milk	2.0/2.0	1.9	78	3	2	0 (0/0)			
Total			504	72	55	21 (9/20)	5 (3/5)		

- 1. ALs for dioxins/dl-PCBs,
- 2. Samples exceeding one or both ALs (samples exceeding ALs for dioxins/dl-PCBs),
- 3. Samples exceeding one or both MLs (samples exceeding MLs for dioxins/sum),
- 4. No official limit for deer; for comparison the limits for game were used,
- 5. evaluation against AL and ML included 20% measurement uncertainty

	ALs ¹	REF	DR C	CALUX	HRGC/HRMS (AL/ML+mu)				
Matrix	pg TEQ/ g fat	pg TEQ/ g fat	tested	suspected > REF	Samples >REF	Samples >AL ^{2,5}	Samples >ML ^{3,5}	Neg's tested	>AL
Pork	0.6/0.5	0.5	94	0	0	0 (0/0)		16	0
Poultry	1.5/1.5	0.9	54	0	0	0 (0/0)		15	0
Bovine	1.5/1.0	0.9	87	10	8	5 (0/5)		17	0
Sheep	1.5/1.0	0.9	79	36	35	11 (6/10)	1 (0/1)	7	0
Deer ⁴	1.5/1.5	0.9	6	6	б	5 (3/5)	4 (3/4)	0	na
Eggs	2.0/2.0	1.9	106	17	4	0 (0/0)		22	0
Milk	2.0/2.0	1.9	78	3	2	0 (0/0)		21	0
Total			504	72	55	21 (9/20)	5 (3/5)	98	0

- 1. ALs for dioxins/dl-PCBs,
- 2. Samples exceeding one or both ALs (samples exceeding ALs for dioxins/dl-PCBs),
- 3. Samples exceeding one or both MLs (samples exceeding MLs for dioxins/sum),
- 4. No official limit for deer; for comparison the limits for game were used,
- 5. evaluation against AL and ML included 20% measurement uncertainty

Or

Conclusions

- CALUX assay is a valuable tool for screening, especially for routine monitoring where most samples will be negative
- Suspected samples should be analyzed by GC/HRMS
 - Confirmation of dioxins/dl-PCBs
 - Determination of TEQ-level
 - Determination of congener pattern: source identification
- Use of a bioassay in combination with a confirmation method is the best strategy for detecting novel risks

Case: cholin Chloride

- Feed additive (up to 1 g/kg)
- Positive test response in DR CALUX (different samples)
- Indicative level around 5 ng BEQ/kg
- GC/HRMS: dioxins and dioxin-like PCBs below LOQ
- Various flame retardants present, including tribromophenols
- But also brominated dioxins, considered equally toxic as chlorinated dioxins (but no limits or TEFs (yet))

FR-1808 (OBIND): new flame retardent

How do flame retardants get into a feed additive?

Questions?

