

SISTEMA PLANTIO DIRETO Base para Agricultura Sustentável

Julho 2019

Coordenação Institucional

Federação Brasileira de Plantio Direto e Irrigação

Coordenação Geral

Dr. João Carlos de Moraes Sá

Presidente da comissão Tecnico-científica da PEBRAPDP Professor Sénior - Universidade Estadual de Ponta Grossa Bolista de Produtividade - em Pesquisa - CNPq

Módulo I

Capacidade de recuperação da matéria orgânica do solo e serviços ecossistêmicos, devido ao Sistema Plantio Direto em Biomas Brasileiros.

Coordenador: João Carlos de Moraes Sá

Presidente da comissão Tecnico-científica da FERRAPDP Professor Sénior - Universidade Estadual de Ponta Grossa-Bolsista de Produtividade em Pesquisa - CNPg

Objetivo

Capturar o real potencial desse sistema em compensar parcial ou totalmente o capital natural perdido na forma de CO2 com a conversão do solo sob vegetação nativa em áreas agrícolas nos vários agroecossistemas brasileiros.

Resultados esperados

- Base de dados visando melhorar o manejo de sistemas de produção em Plantio Direto em agroecossistemas.
- Gerar mapas de estoques de Carbono de áreas de Plantio Direto a nível nacional por meio da determinação dos estoques de até 1 metro de profundidade em diversos biomas brasileiros.
- Base de dados para estabelecer os critérios para serviços ecossistêmicos para os agricultores para menor emissão de gases do efeito estufa.
- Desenvolver estratégias para avaliar a recuperação de estoques de Carbono de áreas agrícolas em comparação à vegetação nativa de referência.
- Calibração do Índice de Qualidade Participativo (IQP) com as taxas de sequestro de Carbono.
- Formação de recursos humanos (alunos de mestrado e doutorado) para maior desenvolvimento do SPD no Brasil.
- 7. Base de dados para geração do selo de sustentabilidade para o SPD.

Módulo II

Índice de Qualidade Participativo do SPD (IQP)

Coordenador: Jeankleber Bortoluzzi
Coordenador de projetos e gerente administrativo da FEBRAPOP
Engenheiro agrónomo

Objetivo

Aplicar a metodologia IQP na gestão das propriedades no quesito conservação de solos, ampliando o envolvimento de instituições públicas e privadas.

Resultados esperados

- Propriedades cadastradas com georreferenciamento e avaliação pela metodologia IQP.
- Base de dados visando melhorar o manejo do Sistema Plantio Direto nas propriedades agrícolas.
- Mapeamento de áreas de riscos e com necessidades de intervenções, visando conscientizar, melhorar e ampliar a conservação de solos.
- 4. Desenvolver estratégias para resgatar a qualidade do Sistema Plantio Direto.
- Formação de recursos humanos para maior desenvolvimento do SPD no Brasil.
- Base de dados para geração do selo de sustentabilidade para o SPD.
- Gerar conhecimento a respeito da importância do SPD para recuperação da qualidade de solos.
- Ferramenta de gestão técnica podendo ser empregada em diversos programas estaduais que visam conservação de solo e água.

Módulo III

Indicadores de qualidade do solo em SPD

Coordenadora: Marie Bartz

Direttora secretaria e Vice-presidente da Comissão deRelações Internacionais - FEBRAPOP Professora Teular - Universidade Positivo Pesquisadora - Universidade de Coentra em Portugal

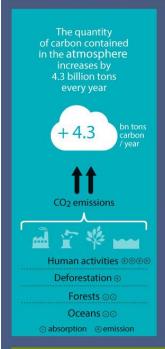
Objetivo

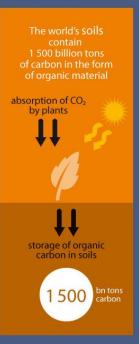
Realizar avaliações de parâmetros físicos e biológicos, indicadores da qualidade do solo, em áreas préselecionadas, em quatro biomas brasileiros (Amazônia, Cerrado, Mata Atlântica e Pampa).

Resultados esperados

- Lista das espécies nativas e exóticas de minhocas que ocorrem nos sistemas de uso do solo avaliados para os biomas Amazônia, Cerrado, Mata Atlântica e Pampa.
- Quantificação (abundância e biomassa) e proporções de espécies nativas e exóticas de minhocas nos sistemas de uso do solo avaliados nos biomas Amazônia, Cerrado, Mata Atlântica e Pampa.
- Adaptação da classificação existente (Bartz et al., 2013) para as áreas sob Sistema Plantio Direto quanto às populações de minhocas (abundância e número de espécies) para cada um dos biomas avaliados (Amazônia, Cerrado, Mata Atlântica e Pampa).
- Quantificação das enzimas arilsulfatase, betaglicosidade e fosfatase ácida para os sistemas de uso do solo avaliados nos biomas Amazônia, Cerrado, Mata Atlântica e Pampa.
- Estabelecimento de padrões quanto às enzimas e os sistemas de uso do solo avaliados nos biomas Amazônia, Cerrado, Mata Atlântica e Pampa.
- Notas quanto à qualidade estrutural, através do DRES, para os sistemas de uso do solo avaliados nos biomas Amazônia, Cerrado, Mata Atlântica e Pampa.
- Quantificações de resíduos de pesticidas acumulados no solo nos sistemas de uso do solo avaliados nos biomas Amazônia, Cerrado, Mata Atlântica e Pampa.
- Correlação dos indicadores mensurados (comunidades de minhocas, enzimas do solo, DRES e pesticidas) entre si e com demais parâmetros químicos, físicos, ambientais e de histórico dos sistemas de uso do solo avaliados nos biomas Amazônia, Cerrado, Mata Atlântica e Pampa.
- Geração de um Índice Geral de Qualidade do Solo comparativo para cada um dos sistemas de uso do solo avaliados nos biomas Amazônia, Cerrado, Mata Atlântica e Pampa.
- Validação do Índice de Qualidade Participativo (IQP) do SPD para cada um dos biomas avaliados (Amazônia, Cerrado, Mata Atlântica e Pampa), através de sua correlação com os indicadores mensurados (comunidades de minhocas, enzimas do solo, DRES e pesticidas).

Abrangência do projeto no território nacional


Biomas do Brasil Localização das áreas de coleta AMAZÓNIA CAATINGA CERRADO MATA ATLÂNTICA PAMPA. PANTANAL



BIENVENIDOS AL SITIO DE LA INICIATIVA « 4 POR 1000 »

https://www.4p1000.org

4 PER 1000 CARBON SEQUESTRATION IN SOILS FOR FOOD SECURITY AND THE CLIMATE

While pursuing the indespensible effort to decrease drastically the green house gases (GHG) emissions due to human activities, increasing soil organic carbon sequestration could make a substantial contribution to GHG mitigation efforts. A theoretical annual increase of the world soil organic carbon stock by 0.4% of its value would be larger than the 2015 annual increase in CO₂ in the atmosphere, which is a major contributor to the greenhouse effect and climate change: this is the origin of the "4 per 1000" title of this initiative.

increased absorption of CO₂ by plants:

farmlands, meadows, forests...

+4%00 carbon storage in the world's soils soils better able to cope with the effects of climate change = less CO₂ in the atmosphere

HOW CAN SOILS STORE MORE CARBON?

The more soil is covered, the richer it will be in organic material and therefore in carbon.

Until now, the combat against global warming has largely focused on the protection and restoration of forests.

In addition to forests, we must encourage more plant cover in all its forms.

Never leave soil bare and work it less, for example by sing no-till methods

Introduce more intermediate crops, more row intercropping and more grass strips

Add to the hedges at field boundaries and develop agroforestry

Optimize pasture management – with longer grazing periods, for example

Restore land in poor condition e.g. the world's arid and semi-arid region:

Improve water and fertilizers management and use organic fertilizers and compost

"This international initiative can reconcile the aims of food security and the combat against climate change, and therefore engage every concerned country in COP21."

Stéphane Le Foll, Vice Chair of the "4 per 1000" Initiative Consortium and former French Minister of Agriculture, Agrifood and Forestry

4 per 1000 Latin America and the Caribbean Symposium

June 15-19, 2020

Iguaçu Falls, Brazil